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ABSTRACT

This report outlines the development and use of the program "LAPLACE".

LAPLACE is capable of solving a second order two dimensional boundary value

problem, employing graphics to assist in mesh generation and solution presentation.

Galerkin approximation methods, along with the development of a finite element

mesh, permit the program to calculate nodal results over the domain of the problem. The

use of these nodal solutions with additional subroutines allows for the computation of

equipotential lines and lines perpendicular to the equipotential lines.

The current format of this program solves Laplace's Equation. Nodal solutions

to Laplace's Equation are calculated over the domain of the problem and used as the

basis for the generation of equipotential lines and their perpendiculars. Equipotential

lines are interpreted as contours and their perpendiculars represent flow lines for the

solution to Laplace's Equation. These lines are used in combination to develop a flow

net over the domain of the problem and this flow net is graphically displayed.

This program was written with the capability of solving several types of second

order two dimensional boundary value problems. The calculation of solutions to other

second order two dimensional boundary value problems is accomplished by entering the

appropriate functional coefficients of the differential equation into one subroutine.
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PREFACE

The study of the two dimensional second order boundary value problem is

presented in the following paper. A solution to a problem of this type varies from system

to system, and requires extensive work to calculate each solution. This paper outlines the

reduction of equations used in the development of a numerical approximate solution and

the generation of computer code that calculates the solution. The procedure has been

written into computer program code capable of calculating solutions for two dimensional

second order boundary value problems, and representing the results graphically. The

graphics are displayed on the computer screen but can be printed to develop a better use

of the program.

Chapter one describes the problem encountered in obtaining a solution to the

second order differential equation and the varied procedures used calculating a solution.

An overview of the steps taken to solve the second order differential equation is given.

Chapter two explains the procedure used by the program. The ability for the

analytical approach to be converted to a numerical solution and represented by computer

code is also discussed.

Chapter three discusses an overview of the program LAPLACE. A general

explanation of the procedures followed by the program in the calculation of a solution

is given and the development of numerical solutions within the program is also discussed.

iv



Chapter four illustrates a two dimensional boundary value problem. The chapter

also outlines a procedure for entering and running this example problem using

LAPLACE. The program user can follow this example to familiarize himself with the

operation of the program, and compare his results to those contained in appendix B.

Chapter five explains the advantages and disadvantages of this program in

calculating the solution of a two dimensional second order boundary value problem. The

limitations of the program are also discussed and guidelines are suggested to obtain better

results from the program. Suggestions are made on the alternate uses for the program,

and the possibility of developing this program into a more useful tool as memory and

speed of personal computers continues to increase.

V
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CHAPTER I

INTRODUCTION

Many physical phenomena are described by the solution of an ordinary or partial

differential equation. The development of solutions to these equations aids engineers in

understanding physical behavior, and results in the development of better systems to

control these phenomena. Differential equations describing physical behavior are varied

but include elliptic, parabolic, and hyperbolic equations.[4]*

Elliptic equations usually describe the equilibrium state of a physical system.

Parabolic or hyperbolic equations generally represent time dependent processes.

Equilibrium systems are studied in this paper and the equations evaluated will be

elliptic.[4]

Introducing different boundary conditions and regions fur&,!r complicates the

calculation of solutions for these differential equations. General boundary conditions for

elliptic equations fall into three categories; essential, natural, or a combination of the

two. Each of the three types of conditions will also be included in the development of

the program and are discussed below.

Solutions to a boundary value problem can be calculated by knowing the types of

equations describing the system and boundary conditions applied to the system. Boundary

conditions must be known; either they are measured from a system directly or specified

Indicates reference number in the list of references.
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in the calculation. These may then be used to solve the differential equations for an exact

solution. The result is a series of calculations, using a given set of data, that finds the

best equation that can produce a good approximate solution for a more complicated, but

real problem.

General Second Order Two Dimensional Partial Differential Equation

The intent of the program developed, was to create a program that calculates a

solution to the general second order, two dimensional partial differential equation. This

equation is shown in equation 1.1.

-V [k(x,y) V u] + c(x,y) -1-u + ] + b(x,y) (u] = f(x,y) 1.1lax dy

u is a state variable (a scalar quantity which must be solved for)

k, c, b, and f are functional coefficients which must be known

It* 0 and cannot change sign

By definition:

Vu M @U + ýLU 1.2ax ay

The program is structured to incorporate the functional coefficients k, c, b, and

f in an independent subroutine for ease in changing them to represent different partial

differential equations.
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The solution of the partial differential equations requires that the boundary

conditions be known and also the type of equation (elliptic, parabolic, or hyperbolic) that

defines the solution of the problem. Boundary conditions include essential, natural, and

a combination of essential and natural. An essential boundary condition can be thought

of as a value of the state variable on a boundary. Then a natural boundary condition

would represent the change of the state variable with respect to distance, and be

proportional to the rate of change across the boundary. A combination of these at

different boundaries could also be specified.

Finite Element Analysis

A significant problem in the sol don of a boundary value problem is the

examination of the internal conditions that allow the boundary conditions to develop.

Solutions to these problems may be calculated using a finite element method, determining

incremental changes in the state variable throughout the problem, and assigning values

to nodes or points on the interior of the domain. [4]

Problem solutions are calculated at nodal points throughout the domain of the

problem; they can also be linearly interpolated between nodal values. The interpolated

points of equal value are connected as contours to graphically represent the problem.

These may be called equipotential lines. Perpendiculars to these lines represent the

gradient of change at a particular point. The equipotential lines and their perpendiculars

are arranged in a criss-cross fashion over the domain of the problem to form a mesh or

net that describes the behavior of the system.
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Numerical Analysis

The majority of partial differential equations that arise in the studies of practical

problems are too complex for exact analytical treatment. Approximate techniques have

been developed to solve them for particular solutions. Approximate integration

techniques, which can be numerical or semi-analytical are extensively employed in these

solutions. Numerical solutions to differential equation problems allow computers to do

extensive calculations and quickly calculate an approximate solution with good accuracy.

The types of numerical integration employed vary and will be discussed in chapter two.

Program Testing and Evaluation

The current edition of the program solves Laplace's Equation. The program can

be modified as stated above by changing one subroutine, thus allowing for the solution

to other forms of second order linear elliptic scalar partial differential equations.

Laplace's Equation is used as a benchmark to determine capabilities of the program.

The solution represented by Laplace's equation is that of fluid flow over a two

dimensional domain of the independent variables, x and y. In this specific case the

equipotential lines connect points of equal pressure (the state variable) and are

represented as contour lines through the domain. Lines drawn perpendicular to the

contours are flow lines and describe fluid flow through the domain.



CHAPTER 2

THEORETICAL BACKGROUND

This program was written to aid in the solution of a general second order linear

elliptic equation. The equation below is used to calculate the solution of two dimensional

boundary value problems and is repeated here from chapter one.

-V [k(x,y) V u] + c(x,y) -l +d-4u + b(x,y) [u] = f(x,y) 2.1
cbc dyI

u is a state variable (a scaler quantity which must be solved for)

k, c, b, and f are functional coefficients which must be known

k* O0 and cannot change sign

By definition:

Vu au + a 2.2

The program allows for the solution of different second order partial differential

equations, of the form shown in equation 2.1, by changing the coefficients for k(x,y),

c(x,y), b(x,y), and f(x,y) in a subroutine. The general second order equation (2.1) can

be reduced to other well known elliptic equations such as Poisson's and Laplace's

Equation. By letting the following values, k(xy) = -1, c(x,y) = 0 and b(x,y) = 0, the

5
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general form of equation 2.1 reduces to Poisson's Equation as shown in 2.3a or 2.3b.

2PU + CU2_ f (x, y) 2.3a
jx- ay

or

V2 u = f (x, y) 2.3b

The second order elliptic equation can be further reduced to Laplace's Equation

by also setting f(x,y) = 0, resulting in equation 2.4a or 2.4b.

.2U + & U = 0 2.4a(3X ay

or

V2u = 0 2.4b

Most practical problems do not require a general solution of the second order

boundary value problem describing it. More commonly a particular solution satisfying

specific boundary conditions is needed. LAPLACE can solve the second order partial for

three types of boundary conditions: essential, natural, and a combination of essential and

natural. The boundary conditions will be developed and explained throughout this

chapter. The explanation for the calculation of an approximate numerical solution to a

second order partial differential equation will be divided into three phases: a model

problem, general one dimensional boundary value problems, and two dimensional

boundary value problems.

The majority of theory and mathematics discussed in the remainder of this chapter
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are contained in references [1,4]. The development of finite element solutions has been

widely studied and additional information on this subject was gathered from other

references, these are contained in the list of references.

Model Problem

The application of the one dimensional case can be studied by considering the

following model boundary value problem:

-Ufl + u = x 2.5

Over the domain:

O<x< 1

for the following boundary conditions:

u(O) = 0, u(1) = 0

Equation 2.5 will be altered by introducing a variable 'v', multiplied by both sides

and also integrating the equation over the domain of x. This procedure results in equation

2.6 shown below. [1]

1 1

f (-ul" + u) vdx= f xvdx 2.6
0 0

The test function 'V has to satisfy the integral; forms that do not satisfy this

integral will not be considered in the set of solutions that satisfy the original equation

(2.5). The group of functions that do satisfy equation 2.6 will be considered in the set
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'H'. Equation 2.6 is integrated by parts and the solution to this integration is shown in

equation 2.7. [1]

1 1

f -u"v = fulvi dc - u'vl 2.7
0 0

Substituting the results of equation 2.7 into equation 2.6 results in the

development of equation 2.8. [1]

1 1f(-u'v' +uv) dx f xv dx +u'vI1 where v r.H0 ' 2.8
0 0

Equation 2.8 is a variational form of equation 2.5. The variational form only

requires that the first derivative of the solution be definable over the domain. The

original equation required that the second derivative of the solution be definable over the

domain. This makes the solution less restrictive and allows the specific solution to come

from a larger set of possible solutions. The development of a variational form of the

original equation will also aid in the calculation of a numerical solution to the boundary

value problem.

The last term of equation 2.8 represents natural boundary conditions. If natural

boundary conditions are present they will be added to the end nodes or boundary of the

linear problem. This term is dropped if the first derivative of the state variable, u, is

equal to zero.

Equation 2.9 is the specific case of equation 2.8 where the first derivative along

the boundary is zero. [1]
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f (-u'v' +uv) dx f xv dx where v r-H0 ' 2.9
0 0

The remaining discussion of the model problem will not include natural boundary

conditions. Natural boundary conditions will be reintroduced in the one and two

dimensional discussions presented later.

Galerkin Approximation

'H' in equation 2.9 represents the set of admissible functions that satisfy the

equation. Two fundamental properties of 'H' are as follows:

a. 'H' is a linear space, therefore a linear combination of functions that make up

the domain 'H' also satisfy the equation.

b. 'H' is infinite dimensional. It is necessary to specify an infinity of parameters

to uniquely define a test function v in the domain.

To obtain a solution, v(x) is represented as a summation of an infinite set of basis

functions satisfying equation 2.9. Each of the basis functions is represented by &(x) and

the value for v(x) can be expressed by the summation shown in equation 2.10.

v(x) = ; P (x) 2.10

Pi in equation 2.10 represents constants and the series must converge. Thus an

approximation of the solution can be represented by a finite number of terms. This

approximate solution is represented by the finite series as displayed in equation 2.11.
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N

The Galerkin method seeks an approximate solution to the boundary value

problem, calculated by considering the solution in a sub space of 'H' rather than the

entire solution over the whole set of 'H'. Equation 2.9 can be rewritten as shown in

equation 2.12 and the set of solutions that satisfy the differential equation is now

reduced.

1 1

f -UV, + UsV,) dx f xv- dx where vr He 2.12
0 0

The domain is divided into sections and the sum of the equations over these sections or

elements represent the solution, equation 2.13 can be defined, and a, represents the

degrees of freedom in the problem.

N

UN(X) = 401 (x) 2.13

The basis functions *, are predetermined by using functions that satisfy the

boundary conditions of the problem. Replacing v. and u. in equation 2.12 with the

respective summations (2.11 and 2.13) the equation 2.14 can be determined.

I O[4 W 40(/) +4' 0x W (x) dl-fxA (x'dx 0 2.14
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Equation 2.14 can be rewritten into the form of equation 2.15. [1]

AVi I Kiia-FJ =0 2.15
7-1

Where:

1
Kij f fE(x) 4(x) + itj(x) 4,(x)j d 2.16

0

and:

1

Fi fx itdx + 4, 1x 2.17
0

fori,j = I,2...,N

Due to the arbitrarity of 03, the solution of equation 2.15 represents a series of

functions that satisfy the boundary value problem resulting in equation 2.18

2K, jj - F, 2.18

for i,j = 1, 2,...,N

The values of 'ca' obtained from solution of equation 2.18 are the approximate

values of the state variable u as shown in equation 2.9.

Through Galerkin approximation methods the model problem has been reduced

to the summation of equations. Calculation of each of these summations is required for
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a, to be calculated. Equation 2.18 represents the summation of the solution over the

domain. The actual calculation of a, will require matrix algebra and finite element

methods.

Finite Element Basics

The finite element method allows a systematic approach for the construction of

basis functions over the domain of the problem. The domain of the problem is divided

into subregions known as elements. Basis functions are constructed over the entire

domain of the problem from shape functions which are defined on each element. The

next section will describe the basis functions used in solving this equation. These

elements are represented by nodes located at their ends. The solution to the overall

(global) problem is the values of the state variable at the nodes. These values are the

weights in the representation of the solution to the problem, as the weighted linear

combination of the basis (or shape) functions. By careful placement of the nodes on the

corners or sides of individual elements, global continuity of the solution can be ensured.

Basis Functions

The following criteria have to be satisfied in the selection of basis functions that

describe the solution over the domain of the problem. [11

1. Basis functions are generated by simple functions (shape functions) defined

piecewise - element by element - over the finite element mesh.
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2. Basis functions are smooth enough to be members of the class H0' of test

functions.

3. Basis functions are chosen in such a way that the parameters defining the

approximate solution Ub are the values of ub(x) at the nodal points.

These functions are normally polynomials, since they are easier to integrate than

trigonometric basis functions. Generally the polynomial basis functions provide a good

approximation of the exact solution.

The simplest set of basis functions that satisfy the conditions above are a set of

linear piecewise segments that have a value of one at the node being evaluated, and zero

at all other nodes in the domain.

These are represented by the following equations:[1]

40xX-xi- 1  for xiI I x - x, 2.19a
h1j

40, = X-i- forXi ý X j.,2. 19b

0.X W = 0 for: x S , x > xi-i 2.19c

Equations 2.19 are graphically represented in figure 2. 1 for i = 1. Notice that the

basis function has a value of one at x = 1 and zero at x = 0, 2, 3, and 4. The function

is linear between nodes x = 0 and x = 2 allowing for the calculation of a first

derivative.



14

1

0 
x

0 1 2 3 4

-h -I

Figure 2.1
Finite Element Basis Function

Figure 2.2 may be viewed as being composed of three separate basis functions or

six piece-wise shape functions each defined over the length 'h'. The conditions of the

basis function are satisfied by the shape functions and their equations have a first

derivative over the domain of the problem. The values for 0 and 0' can be determined

and the solution to the problem calculated by equation 2.18. A procedure for numerical

integration is also used in the calculation of the solution to equation 2.18.
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0
--T x

0 1 2 3 4

Figure 2.2
Finite Element Shape Functions

Numerical Integration

The integrations required in calculation of the solution to equation 2.18 can be

accomplished analytically, but a numerical method of integration is preferred for lengthy

computations. The programming of numerical solutions is an important step in allowing

hundreds of integrals to be calculated over a finite element mesh. The main methods of

numerical integration are the Newton-Cotes formulas, Romberg Integration, and Gaussian

Quadrature.[2] The Newton-Cotes formulas are the simplest and most common

integration schemes. Included in these are the Trapezoidal and Simpson's rules. Both the

Simpson and Trapezoidal rule require that the domain of the problem be divided into

bands. These bands are evaluated over the domain of the problem and each solution is

summed to calculate the integral. The Newton-Cotes formulas are accurate if the band

width being evaluated is small compared to the overall domain of the problem. As a
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finite element mesh is refined, hundreds of elements are introduced into a problem. The

time required to calculate a global solution will increase dramatically due to the number

of calculations required on each element.

Romberg integration and Gaussian Quadrature can achieve a more accurate result

than the Newton-Cotes formulas in fewer calculations. This will result in faster

computation time. The methods are more complex than the Newton-Cotes formulas but

can be easily adapted to computer code. Gaussian Quadrature is used to evaluate integrals

in this program, and a discussion of the Gaussian Quadrature method follows.

Gaussian Quadrature

The following describes the derivation of the two point Gaussian Quadrature

formula, this procedure can then be expanded to a higher ni'mber of integration points

in the same manner. In this procedure, unlike the Newton-Cotes formulas, the nodal

values being evaluated are not located at the end points of the element; their locations are

considered unknowns.

Equation 2.20 is a quadrature formula which when evaluated gives the value of

the integral of :'x) over the region. The equation has four unknowns and requires four

equations to calculate the weighting functions c1, c2 and the location of the integration

points, x1, x2 . [2]

I W c f(xl) + c 2f(x 2 ) 2.20
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The solution of the four unknowns can be calculated if it is assumed the function

fits a constant, linear, parabolic, and cubic term exactly. This is equivalent to the

function being regarded as a general cubic polynomial, and results in equations 2.21

These four equations can be used to calculate the four unknowns. For convenience the

integration is performed over the region from -1 to 1. [2]

1

c1f(xI) + c2 f(x 2 ) = f idx = 2 2.21a
-1

1

c1f(x 1 ) + c2f (x 2 ) = f xdx = 0 2.21b
-1

1

c 1f(x 1 ) + c 2f(x 2) = f x 2dx = 2 2.21c3
-1

1
clf(x1 ) + c2f(x 2) = f x 3dx = 0 2.21d

-1

The simultaneous solution to the above set of equations results in the following:

=1-1

2.22

C2 =1X2 =-

Values of c,, c2, x,, and x2 are substituted back into equation 2.20 resulting in

equation 2.23.
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I= (sf + 1*( 2.23

The solution to the integral over the domain of the problem can be quickly

obtained by evaluating the integrand f(x) at points x, = -1/13 and x2 = 1/13 and applying

equation 2.23.

General Gaussian Quadrature formulation shown in equation 2.24, may be used

to numerically integrate the expression for K, and Fj shown in equation 2.17 and 2.18.

1 n

fg(x) a 2.24

In the above equation, the integral of g(x) over the region -1 to 1 is evaluated.

The index "n" is the number of Gaussian integration points, a, is the x coordinate of the

Gaussian point in a one dimensional problem, and Hi is the weighting function at the

associated Gaussian Point. The formula allows numerical calculation of the integral by

summing the corresponding values of the function evaluated at 'a,' then multiplied by 'Hi'

for each of the Gaussian Quadrature points.

The accuracy of the Gaussian Quadrature is dependent on the number of Gaussian

integration points used and can be determined prior to the actual integration procedure.

Gaussian Quadrature integrates a polynomial of order (2n-1) exactly, where n is the

number of integration points. This can be applied for three Gaussian points to calculate

the integral of a fifth order polynomial exactly. Additional values for weighting functions

and integration points are given in table 2.1. [15]
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Number Generic Coordinate Weighting function
of of associated with

Gaussian Gaussian Integration respective
Integration Point Gaussian

Points -1 <a < 1 Integration Point

n a, Hi

1 0.0 2.0

2 ±0.5773502692 1.0

3 ±t0.7745966692 0.5555555556
0.0 0.8888888889

4 ,0.8611363116 0.3478548451
:t0.3399810436 0.6521451549

±0.9061798459 0.2369268851
5 ,0.5384693101 0.4786286705

0.0 0.5688888889

±0.9324695142 0.1713244924
6 ±0.6612093865 0.3607615730

A0.2386191861 0.4679139346

Table 2.1
Coefficients for Gaussian Quadrature

Isoparametric Elements

The integration points used in evaluating the integral over an element are specific

to the element being evaluated. To increase the flexibility of the finite element method,

the shape functions will be defined on a generic element. This will allow for the element

in question to be transformed to the generic form, the integration performed, and then

the result can be returned to the original coordinate system.
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A general element is shown in figure 2.3, A and B are the element nodes in the

local system. The coordinate system is represented by 4, defined to be positive to the

right and its origin is located at the left node.

The shape functions for the generic element are defined as shown below: [1]

Y I Shape Function 1"•Y •i•Shape Function 2

A B

h

Figure 2.3
Generic Shape Functions

Shape function one is represented as follows:

4,I; (•:) = 1--*
h 2.25a

Shape function two is represented as follows:

h 2.25b

1
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The generic shape functions allows for the development of a system to integrate

over elements that vary in size and location. The equations defining the shape functions,

the development of the Galerkin approximation method, and the use of Gaussian

Quadrature are all brought together to solve the second order boundary value problem.

General One Dimensional System

The ordinary linear second order equation is defined by equation 2.26.

d--[k(X)-jyd (x) + c(x)- yd (x) + b(x) y(x) = f(x) 2.26

k(x) * 0 and does not change sign

y(x) is a variable to be solved for

In this one dimensional case (2.26) the coefficients k, c, b, and f are functions

of x defined over the given domain. Let the following represent the variables in the

above equation.

dxd y(x) = y

2.27
d y(x) -y"

The equation can now be rewritten into a simpler form as shown in equation 2.28.

-K(x) y" + C(x) y' + b(x) y = f (x) 2.28
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Equation 2.28 can also be written to a variational form as shown in equation 2.29.

L L.

f (y- (kv') + c•-' + bj7y) = fdx 2.29
0 0

Where y, is a test variable like the variable v used in the model problem.

Equation 2.30a and 2.30b are determined by integrating the first term of equation

2.29 by parts.

L L

f~Y''+ YY+b v~xL YI= Lj d 2.30a
f (k jT' y, + cjF y, + b•y dx -k ýY/ 10 f .o
o 0

and

L L

(ck jI y I + cy y' + by- y) d -- fda + k ' IoL 2.30b
0 0

Evaluating the above results in equation 2.31

L L

f(kYy'+cy'-+bYy) dx=frfdx+F(L)k(L)y'(L) -3(o) k(O) y'(O) 2.31

0 0

Similar to the model problem, domain basis functions are represented by element

shape functions and are introduced for y, y', y, and y'.

y = L4r (x)J {yIy y' = L *1 (x) J (y.1  2.32a

L -- J I*,1 (x)) L' -Fj J ' (x) I} 2.32b
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Substitution of equations 2.32a and 2.32b into the variational form (2.31) results

in equations 2.33.

L3jJ [K11] {y 1} = LY1J {f 1} + 1~1J {k(L)y'(L), ... ,-k(0)y'(0)} 2.33

by removing the test variable yj equation 2.34 is formed

[K1j] {yi} = {Fi} + {k(L)y'(L) , .. ., -k(O)y'(O)} 2.34

Equation 2.35 is obtained by redefining F, to incorperate the last term

[K1 j] [yi] = [(j] 2.35

where:

(K 1] (f[.l( + C i: ~ + c + b *,4r) dx 2.36a

and

{F1 } -- fax I{k(L)y1(L) -k (0ly(0) 2.36b

Finite element shape functions are represented by W'

The last term of equation 2.36b represents the natural boundary conditions. This

term is added at x = 0 and x = L, where 0 and L are the end points of the domain for

this one dimensional problem. If y', the rate of change with respect to distance, is zero

at the boundaries then the term is omitted and only essential boundary conditions are
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applied. Note that the natural boundary conditions do not apply on the interior of the

domain. After performing the above calculations a program can be developed to compute

solutions to these equations.

Two dimensional problem

The general two dimensional boundary value problem is described below, along

with an approach to develop a numerical solution for the two dimension boundary value

problem.

-V'[k(x,y)Vu(x,y) (x, yx) M -J +b(x,y) u(x,y)=f(x,y) 2.37a

The same approach is taken with the two dimensional problem as was taken with

the model problem and the one dimensional problem. Employing a test variable and

integrating over the domain results in equation 2.37b.

ff V-.[k(x,y)Vu(x,y) +fc (x, y) [C-l-ud 2.3

xy

b (x, y) u (x, y) 1-u dydx= f ff (X, y) j dydx 2.7

x y

Green's Theorem for two dimensions allows for double integration over the

domain of a problem to be transformed to a line integral over the boundary of the

problem.
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Greens Theorem is shown below.

ff(u a ) dxdy u dx+udy) dxdy 2.38

u is the variable being solved for

0 is the boundary defining the domain of the problem

This can be rewritten for the Laplacian shown in equation 2.39 as,

u dxdy 1 an 2.39

R is the domain of the problem

0 is the boundary defining the domain of the problem

The mathematics describing Green's theorem in detail is contained in reference

[8], and the application of Green's theorem to finite elements is explained in reference

[1]. It, in effect, allows the integration by parts in two dimensions of the second order

term in equation 2.36b.

Integration by parts gives us the variational form below:

f f(k V.Vu+c i7Vu+b lu) ds=ffiufds+ffu(s)k(s) au(s) ds 2.40
xy xy xy
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The state variable and test functions are defined below in terms of element shape

functions:

u(x,y) = 1*,(x,y) I i }u1  2.41a

u(x,y) = L Uj J{ *i(x,y) I 2.41b

and

Vu = 1 Vrj3(x,y) I I U1 I 2.42a

V-U = L -i J { Vip (x, y) I 2.42b

Substituting these forms and their derivatives into equation 2.38 results in the

following.

[K11] lu.1 = {F1 } + f k(s)- u(s)*(s) ]ds 2.43

where:

or (k V*r;VVi+c q1V#,+b # ds 2.44

or

Kjj X, -1 OV O- +4 )]+b1V.rj~jxdy2.45
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Where:

V*(x, Axy=+ - (x,y) 2.46

and finally

F1 = ff[f (x, fy,) ,Iddy [k(S) a 4ri (S) ds 2.47
yx

The equation set from above can be evaluated in the same manner as those in the

one dimensional case. The only differences are the shape functions used in the evaluation

of the integral and the integration, both of which involve two independent variables.

Shape Functions

The shape functions used in the program are square quadrilateral elements.

Triangular elements also adapt well to the finite element mesh but were not employed.

These generic quadrilateral elements will be shown below and on the following page.

Shape Functions

4 3 *1 = 1(i(~
4
1

*3 i 1+{) (1+11)
1 2 4

Figure 2.4
Quadrilateral Bilinear Element
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Shape Functions

~1

L= --- ( ) (1-+9 )(-1+{-)

Fiur 2.5 4• = 4-(i+ ) (1112)(- )

86 4,

Qudiaea Quadrtic (1-{2) (1-•)

* 1
2 +4

Figure 2.5 *6 1 ) 112
Quadrilateral Quadratic *r7 12)1+l

Serendipity Element 2
2•,= -. (i-c) (1._•2)

Shape Functions

'lq - -•(t2--4)(n12-,q)
4

4 7 32=_ 1(g2+g) (T,2-T)
11 3

*3 = 1 (2+t) (r2+lq)
8 = 1 ( (42+ 1 )

5 2= 1 (1-g2) (q2+q)

$6 _I (g2+g) (1-112)
2

Figure 2.6 * = 1 (1-g2) (12+11)

Nine Node Quadrilateral 2I
Quadratic Element = 1 ( (1112)

(2 (
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In the equations on the previous two pages, the length of any side of an element is

equal to two. The center of the element is located at the origin of the ý, 1 grid defining

the general element. By defining a general element, non-square elements can be

transformed into a form that allows for integration to be carried out simply. Once the

integration is completed the transformation can be reversed to return these values to the

original coordinate system.



CHAPTER 3

OVERVIEW OF THE PROGRAM

The program developed in this paper is a continuation of the program

LAPLACE.FOR by Dr. W. F. Carroll, Professor, University of Central Florida -

D/CEE. The program Dr. Carroll developed was capable of solving a second order

boundary value problem in the form of Laplace's Equation. This program was used as

the basis for the program developed in this paper. The program LAPLACE.FOR was

written in FORTRAN and had to be re-coded into Microsoft Basic in order to facilitate

the programming of graphics to represent the solution to the problem being evaluated.

The program was modified and the following features added;

1. Availability to store multiple data files, data files that can hold previously

entered problems.

2. A more generalized problem domain entry procedure, and the generation of a

graphic representation of the mesh in the domain.

3. Calculation of equipotential lines and the ability to store the data in a user

designated file, and the graphical presentation of them.

4. Calculation of flow lines and storage in a user designated file, and the

graphical presentation of them.

30
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These changes were made to improve the usefulness of the program and give the

user a better understanding of the results calculated by the program. Both the selection

and adaptation of equipotential lines and flow lines are done interactively by the user to

achieve the flow net desired.

LAPLACE was developed to calculate the solution to a second order two

dimensional partial differential equation. The version of the program included here is

designed to solve a specific second order boundary value problem, Laplace's Equation.

The intent in the development of the program was not to solve Laplace's Equation

uniquely, but develop a universal program that could be easily modified to solve differing

types of second order equations and represent the solutions graphically. This can be

accomplished in the program LAPLACE with only slight changes to the programming

code localized in one of the subroutines.

Program Development

The program allows for the problem domain to be entered by regions or, in the

terminology of program LAPLACE, subdomains. These subdomains are subdivided into

elements and then stored in a data file specified by the user. This data file can be recalled

and different boundary conditions applied to a previously entered file for any subsequent

running of a similar problem with the same domain.

Boundary conditions are entered following a display of the program developed

mesh. Up to 25 boundary conditions can be applied to a problem; these can be essential,

natural, or a combination of essential and natural boundary conditions. The boundary
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conditions are written to the data file containing the subdomain data. After the last

boundary condition is entered, the program will execute a series of subroutines and

determine a solution for the boundary value problem. The solution values of the state

variable for the problem will be assigned to each node in the developed mesh. These

values are also written to the data file containing the boundary values and subdomain

data.

After the solution to the problem is calculated the user can view the results in a

graphical format. The solution to Laplace's Equation is developed further to determine

pressure gradients across the domain. The development of pressure gradients allows for

computation and graphical display of contour lines and lines perpendicular the contour

lines. The contour lines represent lines of equal pressure and their perpendiculars

represent flow lines.

Program Requirements

The Program LAPLACE is written in 'basic' computer language and compiled

to be run under DOS 5.0. The program was compiled using Microsoft Basic Compiler

version 7.0 and can run on a personal computer with or without a math coprocessor. If

a coprocessor is present the program will utilize it.

Graphics can be printed by using the GRAPHICS command supplied under DOS

5.0, prior to execution of the program LAPLACE. The GRAPHICS command allows

flow nets displayed on the screen by the program LAPLACE to be printed by a local

printer. After GRAPHICS is run, the Shift-Print-Screen command will print the graphics
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displayed on the screen to a local printer. Table 3.1 lists additional DOS 5.0 commands

that enable the print-screen option when using a printer other than an IBM graphics

printer or compatible. These commands are used in the same fashion as the GRAPHICS

command explained above. [9]

DOS 5.0 Command Local Printer Type

COLORI IBM Personal Computer color printer
with black ribbon

COLOR4 IBM Personal Computer color printer
with RGB ribbon

COLOR8 IBM Personal Computer color printer

with CMY Ribbon

HPDEFAULT Any Hewlett-Packard PCL printer

DESKJET Hewlett-Packard Deskjet Printer

GRAPHICS IBM Personal Graphics Printer or
compatible

GRAPHICSWIDE IBM Personal Graphics Printer or

compatible with 11 inch carriage

LASERJET Hewlett-Packard LaserJet Printer

PAINTJET Hewlett-Packard PaintJet Printer

Table 3.1
Dos 5.0 Commands for Graphics Printing
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Data Entry

The subroutine ENDAT, within program LAPLACE, asks for the data used to

develop the mesh. The data is entered by rows of subdomains from bottom to top. The

program requires subdomains to be entered in a continuous fashion from the first to the

last sub domain. A maximum of sixteen subdomains are allowed to represent the entire

domain of the problem. For each row of subdomains, the location of the lower left node

of the first active subdomain must be entered.

The coordinates of the lower-left node is with respect to the mesh to be generated

by the program LAPLACE, not the cartesian coordinates of these nodes. The coordinates

of the subdomain location node are determined in the following fashion: The row of

subdomains with the left most sub domain will have a location value of 1 for the lower

left node of the first subdomain in that row. The coordinates for the lower left position

of following rows will increase by the number elements of the first subdomain in the

subsequent row is displaced to the right. After the coordinates are entered for all rows,

the program will compute a finite element mesh and use it to calculate the solution to the

boundary value problem. The mesh will be displayed giving the user a visual

representation of elements, nodes, and the coordinate system. This allows the user to see

if the mesh is entered correctly and gives a better understanding of the numbering

sequence of the elements. The element numbers need to be known to enter boundary

conditions.

Mesh data is correctable after the last value for each subdomain is entered or

during the review of all the subdomain data after all is entered. The mesh data is then
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placed in a file on the users disk and the user can call this data file in a subsequent

running of the program. At the time the mesh is presented graphically on the screen, a

decision can be made to continue or stop the program. If the program is stopped,

execution of the command line LAPLACE is required to reboot the program to reset all

the arrays.

Data for each subdomain is entered according to the following guidelines for the

program to operate properly:

1. Subdomains are consecutively numbered from left to right, bottom to top.

2. No open areas can be introduced between sub-domains in a particular row of

subdomains.

3. All subdomains in a specific row have to have the same corresponding

number of rows of elements.

4. The nodal coordinates and number of elements located along subdomain

boundaries have to align with any other common subdomain boundary.

5. The maximum number of sub-domains is sixteen.

6. The furthest left subdomain will have a location value of one for its first

column of nodal coordinates.



36

Mesh Development

The program LAPLACE uses a mesh generator to aid in the entering of problem

domain data. The problem can be subdivided into smaller areas, called subdomains,

instead of entering each nodal coordinate for the entire domain of the problem. These

subdomains can then be specified to have a certain number of rows of elements with

specific number of elements in each row. This procedure of mesh generation quickens

the input of the domain data and allows the problem to be subdivided into smaller

elements with the program calculating nodal coordinates for these smaller elements.

Boundary Conditions

The subroutine BCDAT of program LAPLACE allows the user to enter boundary

conditions for the mesh previously displayed. The boundary conditions entered can be

essential, natural, or a combination of the two. The number of boundary conditions must

be specified. A single boundary condition may be applied continuously along a strip of

elements on the boundary of the domain. After the number of boundary conditions

(boundary strips) has been entered, the following format and sequence is required when

entering each of the boundary conditions (at a strip).

1st - Type of boundary condition, enter

1 - for essential,

2 - for natural, or

3 - for mixed
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2nd - Enter the numerical value for the boundary condition.

The numerical value entered for a boundary condition is dependent

on the boundary condition specified in step 1. The following applies to

the boundary conditions entered in this step.

a. For essential boundary conditions a value of the state variable is

entered.

b. For natural boundary conditions a value of the normal derivative

of the state variable to the boundary is entered.

c. For a mixed boundary condition each of the above is entered with

the essential boundary condition entered first followed by the

natural boundary condition.

"Ird - Enter the side of the element that the boundary condition is applied to.

1 - for bottom,

2 - for right,

3 - for top, or

4 - for left

4th - Enter the number of the first element that the boundary condition

applies to.

5th - Enter the last element number of the associated boundary condition.

6th - Enter the increment of element numbers between elements that this

boundary condition applies.
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Boundary condition data can be corrected by the user after the last boundary

condition for a strip has been entered. Correction is again allowed during the review of

all the boundary condition data. This data is also written to a user defined file with the

subdomain data.

Data Computation and File Designation

The program next calculates the values of the state variable at the nodal

coordinates of the mesh, and uses this data to calculate and draw the contour and flow

lines and graphically represents the solution to the problem. The number of contours and

flow lines can be varied, allowing the user to achieve the best graphical solution for their

problem.



CHAPTER 4

EXAMPLE PROBLEM

Problem Statement

Calculate the internal pressure variation in the domain shown in figure 4.1. Draw

contour and flow lines to represent the solution in a graphic manner. Essential boundary

conditions are given as the pressure along the lower left edge at 15 psi and along the

upper right edge at 30 psi. Flow is prohibited from crossing boundaries anywhere else.

Dimensions of the domain are as shown in figure 4.1.

4-

3-

2-

0-I• I I I I

0 1 2 3 4 5 6 7

Figure 4.1

Example Problem Domain

39
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The problem can be divided into numerous arrangements of subdomains

depending on the needs of the program user. A finer mesh can be used in specified

subdomains to increase the number of nodal values calculated for that subdomain. The

criteria for subdomain partitioning from chapter three is still observed when dividing the

problem domain into subdomains.

The problem could be solved by dividing the domain into three subdomains as

shown in figure 4.2.

Y

4-
Subdomain 3

3-

Subdornain 2

2-

Subdomain 1

0- I I I I I
0 1 2 3 4 5 6 7

Figure 4.2
Domain Separated into Three Subdomains
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The solution to the example problem located in appendix B was obtained by

dividing the domain of the problem into five subdomains. This division allows the mesh

to be finer in the center portion of the domain than at the ends. Each subdomain has four

nodal values. The sketch below shows the position of the five subdomains and how each

of the subdomains are broken into a number of elements. The position of the lower left

node for the first active subdomain in each row is also shown in the sketch.

21271v&4 sdbdouauxa5

x-p 4 -- 'domfia 34

2p I I I II

0 t -- I i I I I0 1 2 3 4 6 7

Figure 4.3

Subdomain Positioning

The number of elements per row and number of rows of elements for each

sub-domain is listed below:

Sub-domain 1 -- 3 rows of elements -- 3 elements in each row
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Sub-domain 2 -- 3 rows of elements -- 5 elements in each row

Sub-domain 3 -- 2 rows of elements -- 5 elements in each row

Sub-domain 4 -- 3 rows of elements -- 5 elements in each row

Sub-domain 5 -- 3 rows of elements -- 2 elements in each row

The following procedure should be followed to obtain the solution in appendix B for the

problem described above.

Preliminary Data Entry

1. Type LAPLACE and press enter (or return) to start program running and a

title screen will appear, press enter to continue.

2. The program inquires if an existing data file will be used. Type "n" and press

return.

3. Next a name has to be entered that will designate the data that will identify this

problem. EXAMPLE is used as the problem name for the solution shown in

Appendix B. Type "Example" and press return.

Domain Entry

1. The program first requires the number of rows of subdomains. Example has

3 rows of subdomains, enter "3" and press return.

2. The number of subdomains in each row of subdomains is entered next.

Example has 2 sub-domains in row 1, 1 in row 2 and 2 in row 3, working

from bottom to top. Enter "2" for the first row of sub-domains and press

return. The program now requires the position of the lower left hand node of
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the first active subdomain in row number 1. This position is determined by

the size of the mesh and the left most edge of the mesh determines position

1 in the mesh. Because subdomain 1 is the left most subdomain in the sample

problem, the position of the lower left corner of sub-domain 1 is 1. Enter "1"

and press return.

3. The process is repeated for each row of subdomains. Row two has 1

sub-domain and the position in the mesh of the lower left corner of sub-

domain number three is 4. This is determined by the number of elements in

each row of Subdomain #1. Subdomain #1 has three elements, determining

the position of all sub-domains above. Note, if sub-domain 1 had 6 elements

in each row than the position of the lower left node for sub-domain #3 would

be 7 and so on. Enter 1, return, 4, return for row two and 2, return, 4, return

for row three.

4. The program will next ask for the number of integration points and nodes

associated with the element of each subdomain. Our example will use four

integration points and four nodal points for each subdomain. Enter 4, return,

4, return.

5. Correction of the data entered above is now allowed. If all data are entered

correctly, press 'y', return; if not press 'n', return and repeat steps 1 through

4 above.

The program LAPLACE requires additional data to build the finite element

mesh necessary to solve the problem. The following steps specify how data should be



44

entered for each of the sub-domains to correctly allow the program to develop a suitable

mesh.

The program will prompt for the number of rows of elements in a subdomain #1

the corresponding number of elements per row for subdomains #1 and key nodal

coordinates of subdomain #1. The key nodes of the subdomain correspond in position to

the nodes on the type of generic element being used. This procedure is repeated for each

subdomain, in succession, starting from subdomain #1.

1. The firs 3ubdomain of the example problem has 3 rows of elements with 3

elements in each row: enter 3, return, 3, return.

2. Next the program then requires the user to specify the cartesian coordinates for

each of the key nodes of the subdomain being entered. The example program

has 4 nodal coordinate values that need to be entered for subdomain #1, since

four node quadrilateral elements are being used. These values are entered

starting at the lower left corner of the subdomain and continuing around the

subdomain in a counterclockwise fashion entering the x, and y coordinate for

each node. The following would be entered for sub-domain #1:

' 1,1,3,1,3,2,1,2'. The return key must be pressed after each value.

3. The program then allows the user to correct this data after the last coordinate

value is entered for the subdomain in question. If all data is correct, enter y,

return and the program will continue to the next subdomain. If a correction

is necessary enter n, return and steps 1 & 2 can be repeated for the last

subdomain.
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4. Enter the following data for the remaining four subdomains

Subdomain #2

3 - rows of elements, 5 - Elements per row

Node 1 2 3 4
coordinates x 3 5 5 3

y 1 1 2 2

Subdomain #3

2 - rows of elements, 5 - Elements per row

Node 1 2 3 4
coordinates x 3 5 5 3

y 2 2 3 3

Subdomain #4

3 - rows of elements, 5 - Elements per row

Node 1 2 3 4
coordinates x 3- 5 5 3

y 3 3 4 4
Subdomain #5

2 - rows of elements, 5 - Elements per row

Node 1 2 3 4
coordinates x 7 7 5

y 3 3 4 4

5. The data can be reviewed and reentered, if desired, after the final subdomain

has been entered. Enter 'y, return' to review the data and make any necessary

corrections. After all corrections are made, press return and the program will

display a graphical representation of the mesh developed for this problem.

Compare the mesh on the screen with that shown top of next page.
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Figure 4.4
Element Layout of Subdomains

If your mesh does not resemble the mesh shown above then press "n", restart

Laplace.exe and reenter the above data to achieve this mesh.

The program Laplace develops the mesh shown above and numbers the elements

in a consecutive manner from left to right starting at the bottom and working up toward

the top of the page. The numbering scheme for the mesh developed here is in figure

4.5. Fifty five elements make up the mesh in the example problem. This arrangement

will be used to enter the boundary conditions required to solve the problem.

- - -I Mm - I
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49 50151152 53 54 55

42434445 6 47 48

3536 37 38 39 40 41

30 31 32 33 34

25 26 27 28 29

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16
1j2 3 45678

Figure 4.5
Element Numbering Sequence

Boundary Condition Entry

Up to 25 boundary strips for boundary conditions may be entered in the

following manner:

a. The types of boundary condition, enter:

1 - for essential
2 - for natural
3 - for mixed (combination of essential and natural)

b. The value of the essential, natural, or mixed boundary condition.
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c. The side of the element on which the boundary condition is applied.

,/--Side 3
1 - for bottom side 4 - -\
2 - for right side Side 2
3 - for top
4 - for left side

S~Side 1

Figure 4.6
Element Face Boundary Conditions

d. The first element number that the boundary condition is applied to.

e. The last element number that the boundary condition is applied to.

f. The increment of element numbers between successive elements to which
the boundary condition applies.

In the example problem, we know two essential boundary conditions: the first is

at the left face of the domain from coordinate (1,1) to (1,2); the other is at the right face

of the domain from coordinate (7,3) to (7,4). The value of the essential boundary

condition at surface one is equal to 15 psi, and at surface two is 30 psi. We also know

all other boundary have a natural boundary condition of zero.

The following illustrates the procedure for entering boundary conditions on the

left and right boundaries stated above.

1. Enter '2' for the number of boundary strips, and press return.

2. Enter the following 6 values for the next series of questions for boundary

conditions on the left side.
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1 - Essential boundary condition

15 - Value of essential boundary condition

4 - Left face of element #1

1 - The first element associated with this boundary condition

17 - The last element associated with this boundary condition

8 - Increment between elements on the left face where boundary condition is
applied

After the values for boundary condition #1 are entered, the program will ask for

the data values for the second boundary condition. The second set of boundary conditions

are as follows.

1 - Essential boundary condition

30 - Value of the essential boundary condition

2 - The right face of the 41st element

41 - The first element effected by the boundary condition

55 - The last element associated with the second boundary condition

7 - The increment between elements on the left face

Essential boundary conditions and natural boundary conditions that are different

from zero are the only conditions that need to be entered. If a boundary condition is not

entered it is assumed by default to be a natural boundary condition equal zero, therefore

flow can only occur where essential boundary conditions or natural conditions not equal

to zero are specified on the boundary of the problem. A minimum of two boundary

conditions are required to calculate a solution to the differential equation and solve the

problem.
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After all the boundary conditions have been entered, the program allows any

corrections necessary by boundary condition number. If the boundary conditions are not

corrected at this time, they can still be corrected during the review and display after

entry of all the boundary condition data.

Once all the boundary condition data is entered the program is ready to run.

LAPLACE will assemble and band the global stiffness matrix and calculate the solution

values for the finite element mesh. The solution values for the nodal points along with

the subdomain data and the boundary condition data will be written to a file which was

named earlier. It will be given the three letter extension ".MSH".

Equipotential Lines

The program next calculates the equipotential lines from the values calculated at

the nodal points of the mesh. The program asks for the number of equipotential lines to

draw across the domain of the problem. These lines can be drawn over the background

grid of the mesh or just in the boundaries of the problem with the mesh omitted. After

the equipotential lines are drawn, the user can continue to redraw the lines with different

numbers of equipotential lines until an interval is found that best represents the solution

to the problem. Figure 4.7, located at the top of the next page, shows the solution

employing fifty contour lines. This is a general solution to aid the user in using the

program and the number of contour lines can be varied and will effect the flow line

calculation.
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Figure 4.7
Contour Graph

The coordinates for the contour lines are sorted to align data points along the

contour in a linear fashion and written into a file with the project name, followed by the

three letter identifier ".CTR". A screen displaying "contour sorting" will be displayed

until sorting is complete and all data has been written to a file. The sorting of contour

data is required for flow lines to be calculated properly.
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Flow Net Generation

The program uses the last equipotential interval displayed to compute the

perpendicular components that will make up the solution net. Here the program requires

the number of flow lines desired to be generated across the domain of the problem. The

spacing of the contour lines can also be varied at this time to allow the development of

a net that is easy to read. Figure 4.8 shows the solution with five flow lines employed.

F I -

I I I

Figure 4.8
Flow Line Graph

The net developed by the equipotential lines and their perpendiculars can be

plotted over the original mesh or just over the domain of the problem with the mesh

omitted. After the users last version of his net has been generated, the program will save

this data to a fie specified with the project name and the three letter extension ".FLO".
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The program will have to be restarted to reset any large array that may have been

used in the previous running of the program.

See appendix B for the actual output developed by the example problem just

described. The data in the appendix was developed using fifty equipotential lines and five

flow lines over the domain of the problem.

Data is stored in the following files -

"EXAMPLE".DAT -- Data used to develop domain

"EXAMPLE".MSH -- Solution to problem at the nodal points

"EXAMPLE".CTR --- Contour data points

"EXAMPLE".FLO --- Flow line data points



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The development of the program LAPLACE required an understanding of matrix

manipulation and programming language, along with the topics discussed earlier in this

paper. Ten conclusions are presented below summing the development and running of

the program.

1. The ability to design a program that will run an analysis of a two dimensional

boundary value problem requires a good understanding of the finite element method

and the application of Galerkin Approximations.

2. Program LAPLACE can be used as a tool in the solution of differing types of

engineering problems, not only flow problems defined by Laplace's Equation. It was

specifically validated for Laplace's Equation.

3. The program was successful in graphically displaying the solution of two dimensional

second order boundary value problem over the domain of the problem. The program

calculated nodal values for the problem, and used these values to generate

equipotential lines and their perpendiculars. The graphical display produced on the

screen could be easily interpreted and gives the user a visual solution to the problem.

54
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4. The time taken to solve the example problem was reasonable ( 2-5 min ). Time for

such a problem solution depends on the computer used. Calculation of a larger

problem requires increased computation time. This time can dramatically increase

with the introduction of additional rows and columns of elements in subdomains.

5. The flow nets drawn to the screen become more accurate as the finite element mesh

is refined. There is a tradeoff between calculation time and the accuracy of the flow

net calculated. The finer the finite element mesh and the greater the number of nodal

values being calculated, the more realistic the contour values.

6. The accuracy of the equipotential lines and their perpendiculars calculated in specific

region on the domain can be increased by refining the mesh in the area of question.

By using a uniform grid spacing on the first run of the program the graphical output

will appear distorted at discontinuities in the system. These discontinuities can be

corrected by refining the mesh at the locations in question. The refinement of the

mesh will increase the number of nodal points calculated at the discontinuity and

directly increase the refinement of the equipotential lines and their perpendiculars in

that region. The program also allows the user to increase the number of contour lines

used to calculate the flow net. A greater number of contour lines results in a more

refined flow net but also increases computation time.

7. The largest limitation of the program is the inability for Microsoft Basic Language

7.0 to directly access the extended memory that is available on many personal

computers. The program runs out of memory in the calculation of large finite element

meshes, this varies with the arrangement of the mesh and the division of the
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subdomains. If the extended memory of the personal computers could be accessed the

size of the finite element mesh being solved could be increased. The newer versions

of Microsoft Fortran and Microsoft Pascal have procedures built into the compiling

process that gives programs written in these specific languages access to extended

memory. Future versions of BASIC may have the capability to compile existing basic

programs to use extended memory with little or no change in the processing code.

The access to extended memory would give this program added value and increase

the refinement of finite element meshes that could be developed.

9. The graphic code of program LAPLACE draws contour and flow lines for data

written to a data file not internal to the finite element calculations. The graphics

subroutines of this program could be manipulated to read data from a file generated

by the external program if a different finite element program was used to obtain the

values of state variables at nodes in a mesh. This would give the user a graphical

representation of the solution to the two dimensional problem developed outside of

the program LAPLACE.EXE.

10. The program LAPLACE uses a rectangular grid of elements in the calculation of

solutions to two dimensional boundary value problems. The program assigns place

holders to elements between, above, or below subdomains to form a rectangular

patten of elements. This procedure increases the number of elements actually held in

memory. This increases in the number of elements stored in memory decreases the

calculating capability of this program for any subdomain arrangements that do not

combine form a rectangle.
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Recommendations

This program has the ability to be expanded, and used to solve various types of

second order boundary problems. Below are five recommendations regarding this

program.

1. The limitation on mesh size should be overcome. Further study of Microsoft Basic

7.1 and Fortran 5.1 compilers might lead to a way to compile program LAPLACE

so that extended memory could be taken advantage of.

2. The effectiveness of the program LAPLACE to deal with solutions to other second

order, elliptic, two dimensional boundary value problems than represented by

Laplace's equation needs to be validated.

3. The development of a graphics program internal to the program LAPLACE should

be introduced. This would allow for an increase in the resolution of graphical

outputs. If this program ran internal to LAPLACE, memory used by the GRAPHICS

program in DOS 5.0 would be available to the program LAPLACE.

4. The time taken to generate the flow net needs to be decreased if the limitation of size

is overcome. If meshes are calculated with the availability of extended memory, the

time taken to interpolate all these nodes could increase dramatically, requiring faster

computation for graphical output.

5. A subdomain entry procedure should be developed that would allow the program to

only store elements required to calculate the solution to the two dimensional problem.

By only storing elements in the domain of the problem solutions to larger problems

could be calculated, and the computers memory could be more efficiently used.
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LAPLACE PROGRAM

=================Main Program-==============

PROGRAM LAPLACE.BAS BY C. L. Arnold, Civil Engineering, UCF

THIS FINITE ELEMENT CODE SOLVES A GENERAL 2nd ORDER,
LINEAR, ELLIPTC SCALAR PARTIAL DIFFERENTIAL EQUATION

OF THE FORM:

-DEL(DOT)(K(X,Y)*DEL(U)) +C(X,Y)*(DU/DX+DU/DY) +
B(X,Y)*U(X,Y)=F(X,Y)

WHEN C,B, AND F=O AND K 1 THE EQUATION IS REPRESENTED
BY LAPLACE'S EQUATION: - DEL SQUARED (U) = 0

THE FUNCTIONS C, B, F, AND K ARE CONTANED IN
SUBROUTINE COEF AND SET TO SOLVE LAPLACES EQUATION

THE CODE RUNS TOTALLY INTERACTIVELY;
THE USER PROVIDES DATA AND MAKES CHOICES ON DEMAND
(AS REQUESTED ON THE CRT DISPLAY)

THE DOMAIN OF X AND Y MUST BE SUBDIVIDED INTO 1-16
SUBDOMAINS; DATA IS INPUT BY SUBDOMAIN.

REGARDING ELEMENTS AND SUBDOMAINS:
- ONLY QUADRILATERAL ISOPARAMETRIC ELEMENTS ARE

ALLOWED
- THESE MAY BE 4-NODE (LINEAR), 8-NODE

QUADRATIC/SERENDIPITY), OR 9-NODE
(BIQUADRATIC/LAGRANGE) ELEMENTS

- SUBDOMAINS MUST BE SIMILAR IN SHAPE TO THE ELEMS
THEY CONTAIN;

- THEIR KEY NODES MUST BE PLACED SIMILARLY TO THEIR
ELEM NODES

- THE KEY NODES ON THE COMMON BOUNDARY OF TWO ADJACENT
SUBDOMAINS MUST COINCIDE.

- ADJACENT SUBDOMAINS MUST HAVE THE SAME NR OF ROWS OR
COLS OF ELEMENTS AT THEIR COMMON BOUNDARIES SO
ELEMENT NODES AT COMMON SUBDOMAIN BOUNDARIES WILL
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COINCIDE.
- THE LOWER LEFT SUBDOMAIN IS SUBDOMAIN NR 1.

NO OTHER SUBDOMAIN MAY BE LOWER THAN SUBDOMAIN NR 1.
- THE POSITION OF THE FIRST ROW OF ELEMENTS IS

NUMBERED ONE AND THE ROWS ARE CONSECTIVLY NUMBERED
FROM THE LEFT

THE NR OF ELEMENTS ALLOWED DEPENDS ON THEIR TYPE (4 OR
8/9-NODE) AND THEIR ARRANGEMENT (RECTANGULAR,
COLUMNAR, OR IRREGULAR ARRAYS).
A FICTITIOUS RECTANGULAR ARRAY OF THE ELEMS AND THE
BLANK SPACES IN THE DOMAIN, WHERE THE LARGEST NR OF
ELEMS IN ANY COL IN THE ACTUAL ARRAY IS THE NR ROWS IN
THE FICTITIOUS ARRAY AND THE LARGEST NR OF ELEMS IN
ANY ROW OF THE ACTUAL ARRAY IS THE NR OF COLS IN THE
FICTITIOUS ARRAY, MUST NOT GENERATE MORE ARRAYS THAN
MEMEORY CAN HANDLE

THE MAX REQUIRED BAND-WIDTH (IBW) OF THE GLOBAL
STIFFNESS MATRIX, GK,IS DETERMINED BY THE ROW OF THE
ARRAY OF ELEMENTS IN THE DOMAIN WHICH POSSESSES THE
LARGEST NR OF ELEMENTS. FOR ANY ELEMENT IN THIS ROW,
IBW EQUALS TWICE THE GLOBAL NODE NR OF ELEMENT NODE 3
MINUS TWICE THE GLOBAL NODE NR OF ELEMENT NODE 1 PLUS
ONE. FOR EXAMPLE, FOR AN ELEMENT ARRAY WHOSE MAX ROW
HAS:

1 4-NODE ELEM, IBW= 7
15 4-NODE ELEMS, IBW=35
1 8-NODE ELEM, IBW= 15
7 8-NODE ELEMS, IBW=51
1 9-NODE ELEM, IBW =17
7 9-NODE ELEMS, IBW=65

DATA ON BC ARE ENTERED BY BOUNDARY STRIPS - THE SINGLE
ROWS OR COLS OF ELEMS ON THE PERIMETER OF THE DOMAIN;
1-25 STRIPS MAY BE USED.
THE BC DATA IN A STRIP (SAME FOR EACH ELEM IN THE
STRIP) ARE:
- KIND OF BC (TYPE I:ESSENTIAL; TYPE 2:NATURAL; TYPE

3:MIXED)
- VALUE OF BC (U:TYPE 1; DU/DN:TYPE 2 OUTWARD IS

POSITIVE; H AND UE:TYPE 3 WHERE DU/DN = H*(U-UE); H
IS POSITIVE)
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- ELEM SIDE NR ON WHICH BC ARE APPLIED (NR 1 FOR ELEM
NODES 1-2, NR 2 FOR 2-3, NR 3 FOR 3-4, AND NR 4 FOR 4-1)

- LOWEST ELEM NR IN THE STRIP
- HIGHEST ELEM NR IN THE STRIP
- INCREMENTAL VARIATION IN ELEM NR - GOING FROM

LOWEST TO HIGHEST.

* BC ARE APPLIED AT ELEM NODES ON THE APPLICABLE ELEM
SIDE; ESSECTIAL BC MAY BE AT BOTH CORNER NODES ON THE
SIDE OR JUST THE THE 1ST NODE (SEE APPLYBC); ELEMS
WITH BC ON 2 (OR 3) SIDES MUST APPEAR IN THE 2 (OR 3)
ADJOINING STRIPS OVERLAPPED ON THE ELEMENT.
NATURAL BC WITH A VALUE = 0 NEED NOT BE ENTERED.

INTEGRATION IS BY GUASSIAN QUADRATURE AT 4 OR 9 POINTS
IN EACH ELEM.SINCE THE TYPE OF ELEM MUST BE UNIFORM
THROUGHOUT THE DOMAIN, SO MUST BE THE ORDER OF
INTEGRATION.

REM $DYNAMIC

DECLARE SUB ENDAT (NAMES)
DECLARE SUB SIZE (NROW%, NCOL%)
DECLARE SUB MESH (NROW%, NCOL%, NGLO%0, XYGLO#0,
IGLO%)
DECLARE SUB SHAPE (L%)
DECLARE SUB BAND (NROW%, NCOL%, NGLO%0, XYGLO#O,
IBW%,_
IGLO%, MDOF%, MBW%)
DECLARE SUB ELMDAT (IRE%, NROW%, NCOL%, NGLO%0,_
XYGLO#())
DECLARE SUB RBC 0
DECLARE SUB BCDAT (NB%)
DECLARE SUB ASSMB (NROW%, NCOL%, NGLO%0, XYGLO#O,_
IGLO%, IBW%, GF#O, GK#O)
DECLARE SUB SETINT 0
DECLARE SUB BCINT 0
DECLARE SUB ELEM (IRE%)
DECLARE SUB APLYBC (IRE%)
DECLARE SUB BSHAPE (INTB%)
DECLARE SUB SOLVE (IGLO%, IBW%, GF#0, GK#O, U#()
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DECLARE SUB PROUT (NROW%, NCOL%, NGLO%0, XYGLO#O,
IGLO%, USO)
DECLARE SUB COEF (GX#, GY#)
DECLARE SUB PLOT2D (NROW%, NCOL%, NGLO%0, XYGLO#O,_
IGLO%, PAUSES)
DECLARE SUB CONTOUR (NROW%, NCOL%, NGLO%0, XYGLO#0,_
IGLO%, U#()
DECLARE SUB EXIST 0
DECLARE SUB ZSORT 0
DECLARE SUB FLOWI (NROW%, NCOL%, NGLO%0, XYGLO#0,_
IGLO%, U#0)

COMMON /CELM/ NSD%, NRSD%, NCSD%0, KELM%, IELM%,_
ICR%0, XSD#0
COMMON /CESH/ XXI#, EETA#
COMMON /CHAPE/ PSI#(), DPSI#0
COMMON /SIZEA/ NCOLE%0, NRE%
COMMON /CINTA/ XIETA#0, WT#()
COMMON /CBC/ NRB%(), KBC%0, VBC#0, ISIDE%(), NRBE%()
COMMON /KOEF/ F#, AK#, C#, B#
COMMON /EFK/ EF#(), EK#0
COMMON /CEDAT/ NELM%0, XYELM#0
COMMON /BHAPE/ BPSI#(), BDPSI#0
COMMON /BINT/ BXI#0, BWT#0
COMMON /SHA/ VCT%0, EDFL$

CLS
10 MDOF% = 1500

IBW% = 500
PRINT: PRINT: PRINT: PRINT

20 PRINT SPC(1I); "Program LaPlace - by C. L. Arnold, UCF Civil
Engineering"
PRINT: PRINT
PRINT SPC(15); "Finite Element Solution of LaPlaces Equation"
PRINT
PRINT SPC(26); "del squared (U) = 0"
PRINT

30 PRINT SPC(8); "Max nr of (real + blank) nodes is";
MDOF%; " Max bandwidth is "; MBW%
PRINT: PRINT: PRINT: PRINT: PRINT: PRINT: PRINT: PRINT
INPUT "hit enter to continue"; PAUSES

40 CALL ENDAT(NAME$)



64

CALL SIZE(NROW%, NCOL%)
DIM NGLO%(NROW%, NCOL%), XYGLO#(2, NROW%, NCOL%)

CALL MESH(NROW%, NCOL%, NGLO%O), XYGLO#O), IGLO%)
CALL PLOT2D(NROW%, NCOL%, NGLO%O), XYGLONO), IGLO%,_
PAUSE$)

IF PAUSES = "n" OR PAUSE$ = "N" THEN GOTO 60
CALL RBC
CALL BAND(NROW%, NCOL%, NGLO%O), XYGLO#O), IBW%, IGLO%,_
MDOF%, MBW%)

DIM GF#(IGLO%), GK#(IGLO%, IBW%)
DIM BPSI(3), BDPSI(3)

CALL ASSMB(NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%, IBW%,_
GF#O), GK#O))

DIM U#(IGLO%)

CALL SQL VE(IGLO%, IBW%, GF#(), GK#(), U#())
CALL PROUT(NROW%, NCOL%, NGLO%O), XYGLO#(), IGLO%, U#())
CALL CONTQUR(NROW%, NCOL%, NGLO%O), XYGLO#(), IGLO%,_
U#())
CALL ZSORT
CALL FLOW1(NROW%, NCOL%, NGLO%O), XYGLO#(), IGLO%, U#())

SCREEN 0
CLS

50 PRINT: PRINT
PRINT SPC(1); "The solution for the mesh is in file "; NAMES + ".msh"
PRINT
PRINT SPC(1); "The contour data is in file "; NAME$ + ".ctr"
PRINT
PRINT SPC(l); "The flow data is in file "; NAMES + ".flo"
PRINT
PRINT SPC(1); "The mesh data is in file"; NAMES + ".dat"

60 PRINT: PRINT
PRINT "You will have to restart program to reset arrays"

70

END

REM $STATIC



65

------------------------------ --------- Subbroutines --.....................----------

'===============-SUB APLYBC----------------

SUB APLYBC (IRE%)

SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED EF#(), EK#()
SHARED NELM%(), XYELM#()
SHARED NRB%, KBC%(), VBC#(), ISIDE%(), NRBE%()
SHARED BPSI#(), BDPSI#()
SHARED BXI#(), BWT#()

DIM IRB % (3), ISZ % (3), XYM#(2, 3)

------ IDENTIFY BOUNDARY STRIPS IN WHICH ELEMENT IS LOCATED----

IST% = 0
FOR IB% = 1 TO NRB%

FOR NEL% = NRBE%(1, IB%) TO NRBE%(2, IB%) STEP
NRBE%(3, IB%)
IF NEL% < > IRE% GOTO 100
IST% = IST% + I
IRB%(IST%) = IB%

100 NEXT NEL%
NEXT IB%

IF IST% = 0 THEN EXIT SUB

------.LOOP ON APPLICABLE ELEMENT SIDES ------

FOR ISE% = 1 TO IST%
IB% = IRB%(ISE%)
ISZ%(1) = ISIDE%(IB%)
ISZ%(2) = ISZ%(1) + 1
ISZ%(3) = ISZ%(1) + 4
IF ISZ%(1) = 4 THEN ISZ%(2) = 1
IF KBC%(IB%) < > 1 THEN GOTO 120

-- APPLY ESSENTIAL BC TO BOTH CORNER NODES ON THE SIDE-----
(DO 110 I=1,3) OR TO JUST THE 1ST CORNER NODE ON THE SIDE
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(DO 110 I=1,3,2); MID-SIDE NODE IS TAKEN CARE OF
AUTOMATICALLY AS APPLICABLE

FORI% = 1TO3
IE% ISZ%(I%)
IF KELM% = 4 AND I% = 3 GOTO 110
EK#(IE%, IE%) = EKI(IE%, IE%) + (1D+ 15)
EF#(IE%) = EF#(IE%) + VBC#(1, IB%) * (1D+15)

110 NEXT 1%

GOTO 160

'----APPLY NATURAL OR MIXED BC----

120 VB# = VBC#(1, IB%)
IF KBC%(IB%) = 3 THEN VB# = -VB# * VBC#(2, IB%)

------.OBTAIN X-Y COORDS AT THE 3 NODES ON THE ELEM SIDE -----

FORI% = 1TO3
INTA% - ISZ%(I%)
FORJ% 1T02

XYM#(J%, 1%) = XYELM#(J%, INTA%)
NEXTJ%

NEXT 1%

IF KELM% < > 4 GOTO 130

FORJ% = ITO2
XYM#(J%, 3) = (XYM#(J%, 1) + XYM#(J%, 2)) / 2#

NEXTJ%

*-- CALCULATE THE JACOBIAN POR INTEGRATION ALONG THE -----
I ELEM SIDE

130 FOR INTB% = 1 TO 3
CALL BSHAPE(INTB%)
DXDS# = XYM#(1, 1) * BDPSI#(1) + XYM#(I, 2) * BDPSI#(2)_
+ XYM#(1, 3) * BDPSI#(3)
DYDS# = XYM#(2, 1) * BDPSI#(I) + XYM#(2, 2) * BDPSI#(2)_
+ XYM#(2, 3) * BDPSI#(3)
DJAC# = SQR(DXDS# - 2 + DYDS# A 2)
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IR% =3
IF KELM% < >4 G0T0140

'----CONVERT ID QUADRATIC SHAPE FUNCTIONS TO ID LINEAR---
SHAPE FUNCTIONS FOR 4-NODE LINEAR ELEMS

IR% =2
FORI1% = ITO 2

BPSI#(I%) = BPSI#(I%) + .5# * BPSI#(3)
NEXT 1%

----INTEGRATE ALONG THE ELEM BOUNDARY ---

140 FOR 1%=1ITO IR%
11E% = ISZ%(I%)
EF#(IE%) = EF#(IE%) - VB# * BPSI#(I%) BWTA'(INTB%)_
* DJAC#
IF KBC%(IB%) = 2 GOTO 150
FORJA = ITO IR%

JE% = ISZ%(J%)
EK#(IE%, JE%) = EK#(IE%, JE%) + VBC#(1, IB%)*
BPSI#(I%) * BPSI#(J%) * BWT#(INTB%) * DJAC#

NEXT 1%
150 NEXT 1%

NEXT INTB%
160 NEXT ISE%

END SUB

SUB ASSMB (NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%,_
IBW%,GF#(), GK#())

SHARED NCOLE%(), NRE%
SHARED NELM%(), XYELM#()
SHARED EF#(), EKI()
SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()

DIM EF#(9), EK#(9, 9)

----INITIALIZE ---
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FOR I = I TO IGLO%
GF#(I) - 0#
FOR J 1 TO IBW%

GK#(I, J) = 0#
NEXT J

NEXT I

CALL SETINT

CALL BCINT

------.LOOP ON THE ELEMENTS -----

FOR IRE% = 1 TO NRE%
CALL ELMDAT(IRE%, NROW%, NCOL%, NGLO%0, XYGLO#0)
CALL ELEM(IRE%)
CALL APLYBC(IRE%)

LOCATE 10, 26: PRINT * * * *
LOCATE 11, 26: PRINT "* BUILDING GLOBAL MATRIX *"

LOCATE 12, 26: PRINT "* ";TIME$;"
LOCATE 13, 26: PRINT *

------- ASSEMBLE THE GLOBAL FORCE VECTOR-

FOR I = I TO KELM%
IG% = NELM%(I)
GF#(IG%) = GF#(IG%) + EF#(I)

-ASSEMBLE THE GLOBAL STIFFNESS MATRIX -----

FOR J = 1 TO KELM%
JG% = NELM%(J) - IG% + (IBW% / 2- .5) + 1
IF JG% < 0 OR JG% > IBW% GOTO 200
GK#(IG%, JG%) = GK#(IG%, JG%) + EK#(I, J)

200 NEXT J
NEXT I

NEXT IRE%

END SUB

-=============-SUB BAND====================
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SUB BAND (NROW%, NCOL%, NGLO%(), XYGLO#(), IBW%, IGLO%,_
MDOF%, MBW%)

SHARED NCOLE%(), NRE%
SHARED NELM%(), XYELM#()
SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()

DIM NELM %(9), XYELM#(2, 9)

------.CALCULATE THE MAX REQUIRED BAND WIDTH (IBW%) FOR THE -----
GLOBAL STIFFNESS MATRIX, GK#(IGLO%,IBW%)

CLS
IBW% = 1
FOR IRE% = 1 TO NRE%

CALL ELMDAT(IRE%, NROW%, NCOL%, NGLO%0, XYGLO#())

FOR I = 1 TO KELM%
ITBW% = 2 * (NELM%(3) - NELM%(1)) + 1
IF IBW% < ITBW% THEN IBW% = ITBW%

NEXT I

LOCATE 10, 26: PRINT *
LOCATE 11, 26: PRINT "* BANDING MATRIX *"
LOCATE 12, 26: PRINT "* ";TIME$; "

LOCATE 13, 26: PRINT * ****** *

NEXT IRE%

CLS
NX% = NROW% * NCOL%
IF IBW% > MBW% OR NX% > MDOF% THEN 300 ELSE 310

300 PRINT " You have exceeded the limits for max bandwidth or"
PRINT " (real + blank) nodes": PRINT
INPUT " Want to re-enter domain and subdomain data or just stop? r/s"; IY$
PRINT
IF IY$ = "S" OR IY$ = "s" THEN STOP
CALL ENDAT(EDFL$)

310 END SUB
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'=============-SUB BCDAT=------------------

SUB BCDAT (NB%)

SHARED NRB%, KBC%(), VBC#(), ISIDE%(), NRBE%()

REDIM NBC%(3): NBC%(1) = 1: NBC%(2) = 1: NBC%(3) = 2

*-- READ SIX BC DATA FOR TYPE 1 OR 2 STRIP, SEVEN BC DATA FOR-----
TYPE 3 STRIP

NS% = 1
NBS% = NRB%
IFNB% <> 0THENNS% = NB%
IF NB% < > 0 THEN NBS% = NB%
FOR J = NS% TO NBS%

PRINT : PRINT " Boundary Strip,"; J

INPUT KB%
FOR K = 1 TO NBC%(KB%)

INPUT VBC#(K, J)
NEXT K

INPUT ISIDE%(J)
FORI = 1TO 3

INPUT NRBE%(I, J)
NEXT I

KBC%(J) = KB%

NEXT J

END SUB

-----==SUB BCINT===

SUB BCINT

SHARED BXI#(), BWT#()
DIM BXI#(3), BWT#(3)

BXI#(1) = -(SQR(3# / 5#))
BXl#(2) = -BXI#(1)
BXI#(3) = O#
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BWT#(1) = 5# / 9#
BWT#(2) = BWT#(1)
BWT#(3) = 8# / 9#

END SUB

-----=========SUB BSHAPE--------------------

SUB BSHAPE (INTB%)

SHARED BXI#(), BWT#()
SHARED BPSI#(), BDPSI#()

------.EVALUATE 1D QUADRATIC SHAPE FUNCTIONS FOR ELEM SIDES -----

BPSI#(1) = BXI#(INTB%) * (BXI#(INTB%) - I#) * .5#
BPSI#(2) = BXI#(INTB%) * (BXI#(INTB%) + I#) * .5#
BPSI#(3) = I# - BXI#(INTB%) - 2#
BDPSI#(i) = BXI#(INTB%) - .5#
BDPSI#(2) = BXI#(INTB%) + .5#
BDPSI#(3) = -2# * BXI#(INTB%)

END SUB

-------- SUB COEF=------------------

SUB COEF (GX#, GY#)

SHARED F#, AK#, C#, B#

------ THE LOAD FUNCTION F AND COEFFICIENTS AK, AND B MUST BE -----
* EXPRESSED AS FUNCTIONS OF THE GLOBAL X-Y COORDS, GX AND

GY. IT MUST BE POSSIBLE TO CALCULATE THEIR VALUES AT EACH
INTEGRATION POINT WITHIN EACH ELEMENT.

F# N 0#
AK# = I#
C#= 0#
B# = 0#

END SUB

-----=========---SUB CONTOUR==-=============
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SUB CONTOUR (NROW%, NCOL%, NGLO%(), XYGLO#(),_
IGLO%, U#()

REDIM XX#(O TO NROW% + 1, O TO NCOL% + 1, 2)
REDIM NNGLO%(0 TO NROW% + 1, 0 TO NCOL% + 1)
DIM FF#(NROW% + 1, NCOL% + 1)
DIM XX(IGLO%), YY(IGLO%)

------.CHANGE ASPECT RATIO IF NOT A SQUARE THEN SQUARE -----

FOR I = 1 TO NROW%
FOR J = 1 TO NCOL%

NNGLO%(I, J) = NGLO%(I, J)
FORM = 1T02

XX#(I, J, M) = XYGLO#(M, I, J)
NEXT M
IF NGLO%(I, J) = 0 THEN 400
U=lJ+ 1
FF#(I, J) = U#(IJ)

400 NEXT J
NEXT I

------ SET SCREEN -----

410 SCREEN 0
CLS
KEY OFF: DEFINT I-N
SCREEN 11: F$ = "####.##"
ASP = .46
CLS

XMAX = XX#(1, 1, 1)
YMAX = XX#(1, 1, 2)
XMIN = XX#(1, 1, 1)
YMIN = XX#(I, 1, 2)
FMAX = FF#(1, 1)
FMIN - FF#(1, 1)

FOR I 1 TO NROW%
FOR J = I TO NCOL%

IF XMAX < XX#(I, J, 1) THEN XMAX = XX#(I, J, 1)
IF YMAX < XX#(I, J, 2) THEN YMAX = XX#(I, J, 2)
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IF XMIN > XX#(I, J, 1) THEN XMIN = XX#(I, J, 1)
IF YMIN > XX#(I, J, 2) THEN YMIN = XX#(I, J, 2)
IF NNGLO%(I, J) = 0 THEN 420
IF FMAX < FF#(I, J) THEN FMAX = FF#(I, J)
IF FMIN > FF#(I, J) THEN FMIN = FF#(I, J)

420 NEXT J
NEXT I
NN = I

LOCATE 16, 25: INPUT "Number of Contour Lines"; NCL
LOCATE 18, 25: INPUT "Overlap mesh on Contour Lines (Y/N)"; msh$

STP = (FMAX - FMIN) / (NCL)
CLS

XL = (XMAX - XMIN)
YL = (YMAX - YMIN)
XO = XMIN-XL/ 10
YO = YMIN-YL/ 10

VIEW (51, 1)-(639, 430)

AA = 538 * ASP 1 167

IFXL/YL > AATHENYL = XL/AA
IFXL/YL < AATHENXL = YL*AA
XMAX = XO + 1.2 * XL: YMAX = YO + 1.2 *YL
WINDOW (XO, YO)-(XMAX, YMAX)
CLS
IF msh$ = "Y" OR msh$ = "y" THEN GOTO 470

------ FIND BOUNDRY LINES -----

FOR I = 1 TO (NROW%)
FOR J = I TO (NCOL%)

IF NNGLO%(I, J) = 0 THEN 460
XI = XX#(I, J, 1)
Y1 = XX#(I, J, 2)

IF NNGLO%(I + 1, J + 1) = 0 THEN 430
IF NNGLO%(I + 1, J) = 0 OR NNGLO%(i - 1, J) = 0 THEN 430
IF NNGLO%(l - 1, J + 1) = 0 AND NNGLO%(l - 1, J) < > 0
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THEN 430 ELSE 440

430 X2 = XX#(I, J + 1, 1)
Y2 = XX#(I, J + 1, 2)
IF X2 = 0 THEN 440
LINE (XI, Y1)-(X2, Y2)

440 IF NNGLO%(I + 1, J + 1) " 0 THEN 450
IF NNGLO%(I, J + 1) = 0 OR NNGLO%(I, J - 1) = 0 THEN 450
IF NNGLO%(I + 1, J - 1) =O AND NNGLO%(I, J - 1) < > 0
THEN 450 ELSE 460

450 X2 = XX#(I + 1, J, 1)
Y2 = XX#(I + 1, J, 2)
IF Y2 = 0 THEN 460
LINE (Xl, YL)-(X2, Y2)

460 NEXT J
NEXT I

GOTO 500

'----DRAW MESH -----

470 FOR I = 1 TO (NROW%)
FOR J = 1 TO (NCOL%)

IF NNGLO%(I, J) = 0 THEN 490
Xl -= XX#(I, J, 1)
Y1 -= XX#(I, J, 2)

IF NNGLO%(I, J + 1) = 0 THEN 480
IF J- NCOL% THEN 480
X2 - XX#(I, J + 1, 1)
Y2 - XX#(I, J + 1, 2)

LINE (XI, Yl)-(X2, Y2)

480 IF I = NROW% THEN 490
IF NNGLO%(i + 1, J) = 0 THEN 490
X2 = XX#(I + 1, J, 1)
Y2 = XX#(I + 1, J, 2)

LINE (XI, Y1)-(X2, Y2)
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490 NEXT J
NEXT I

------.CONTOUR PLOTTING -----

500 OPEN "CONTR.TMP" FOR OUTPUT AS #4

PRINT #4, XO, YO
PRINT #4, XMAX, YMAX
PRINT #4, FMIN
BCOUNT = 1
FOR I = 1 TO NROW%

FOR J = 1 TO NCOL%
FF = FF#(I, J)
IF FMIN = FF THEN GOTO 501 ELSE 502

501 BCXX# = XX#(I, J, 1): BCYY# = XX#(I, J, 2)
IF BCOUNT < > 1 THEN GOTO 502
PRINT #4, BCXX#, BCYY#
BCOUNT = BCOUNT + 1

502 NEXT J
NEXT I
PRINT #4, BCXX#, BCYY#
PRINT #4, 0, 0

REDIM XXX(2), YYY(2)
FOR CTL = (FMIN + STP) TO FMAX STEP STP

PRINT #4, CTL
FOR I = I TO (NROW% - 1)

FOR J = 1 TO (NCOL% - 1)

N=0
IF NNGLO%(I + 1, J) = 0 THEN 590
IF NNGLO%(I, J + 1) = 0 THEN 590
IF NNGLO%(I + 1, J + 1) = 0 THEN 590
IF FF#(I, J) = 0 THEN 590

IF FF#(I, J) < CTL AND FF#(I, J + 1) > CTL THEN 510
IF FF#(I, J) > CTL AND FF#(I, J + 1) < CTL THEN 510
ELSE 520

510 N= N + 1
Xl = XX#(I, J, 1)
Y1 = XX#(I, J, 2)
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X2 = XX#(I, J + 1, 1)
Y2 = XX#(I, J + 1, 2)
PP = (CTL - FF#(I, J)) / (FF#(I, J + 1) - FF#(I, J))

XXX(N) =Xl +(X2 - Xl) * PP
YYY(N) = Y1 + (Y2 - Y1) * PP

520 IF FF#(I, J) < CTL AND FF#(I + 1, J) > CTL THEN 530
IF FF#(I, J) > CTL AND FF#(I + 1, J) < CTL THEN 530
ELSE 540

530 N= N + 1
Xi = XX#(I, J, 1)
YI = XX#(I, J, 2)
X2 = XX#(I + 1, J, 1)
Y2 = XX#(I + 1, J, 2)
PP = (CTL - FF#(I, J)) / (FF#(I + 1, J) - FF#(I, J))

XXX(N) = Xl + (X2 - XI) * PP
YYY(N) = Y1 + (Y2 - Yl) * PP

540 IF FF#(I, J + 1) < CTL AND FF#(I + 1, J + 1) > CTL_
THEN 550
IF FF#(I, J + 1) > CTL AND FF#(I + 1, J + 1) < CTL_
THEN 550 ELSE 560

550 N= N + 1
Xl = XX#(l, J + 1, 1)
Y1 = XX#(I, J + 1, 2)
X2 = XX#(l + 1, J + 1, 1)
Y2 = XX#(I + 1, J + 1, 2)
PP - (CTL - FF#(I, J + 1)) / (FF#(I + 1, J + 1) - FF#(I,_
J-+ 1))

XXX(N) = X1 + (X2 - Xl) *PP
YYY(N) = Y1 + (Y2 - Yl) *PP

560 IF FF#(I + 1, J) < CTL AND FF#(I + 1, J + 1) > CTL_
THEN 570
IF FF#(I + 1, J) > CTL AND FF#(I + 1, J + 1) < CTL_
THEN 570 ELSE 580

570 N N+ I
Xl = XX#(I + 1, J, 1)
YI = XX#(I + 1, J, 2)
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X2 = XX#(I + 1, J + 1, 1)
Y2 = XX#(I + 1, J + 1, 2)
PP = (CTL - FF#(I + 1, J)) / (FF#(I + 1, J + 1) - FF#(I +
1, J))

XXX(N) = XI + (X2 - Xl) *PP
YYY(N) = Y1 + (Y2 - Y1)* PP

580 IF XXX(1) = XXX(2) AND YYY(I) = YYY(2) THEN 590
LINE (XXX(2), YYY(2))-(XXX(1), YYY(1))

PRINT #4, XXX(1), YYY(1)
PRINT #4, XXX(2), YYY(2)
XXX(2) = XXX(1)
YYY(2) = YYY(1)

590 NEXT J
NEXT I
PRINT #4, 0, 0

NEXT CTL
PRINT #4, -100000

PRINT #4, FMAX
BCOUNT = 1
FOR I = 1 TO NROW%

FOR J = I TO NCOL%
FF = FF#(I, J)
IF FMAX = FF THEN GOTO 591 ELSE 592

591 BCXX# = XX#(I, J, 1): BCYY# = XX#(I, J, 2)
IF BCOUNT < > I THEN GOTO 592
PRINT #4, BCXX#, BCYY#
BCOUNT = BCOUNT + 1

592 NEXTJ
NEXT I
PRINT #4, BCXX#, BCYY#
CLOSE #4

LOCATE 27, 5:
PRINT "BOUNRY CONDITIONS, MIN = ";FMIN; ",MAX = ";FMAX
LOCATE 28, 5:
PRINT "CONTOUR INTERVAL - ";:PRINT USING "###.####"; STP
LOCATE 29, 5:
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INPUT "WANT TO REDRAW WITH NEW CONTOUR INTERVAL
(Y/N)"; RED$
IF RED$ = "Y" OR RED$ = "y" THEN GOTO 410

CLS
SCREEN 0
CLS

END SUB

DEFSNG I-N
-SUB ELEM---------------

SUB ELEM (IRE%)

SHARED NELM%(), XYELM#()
SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED PSI#(), DPSI#()
SHARED XIETA#(), WT#()
SHARED F#, AK#, C#, B#
SHARED EF#(), EK#()

REDIM DXDS#(2, 2), DSDX#(2, 2), DPSIX#(KELM%), DPSIY#(KELM%)

*-- INITIALIZE -----

FORI- I TO9
EF#(1) = 0#
FORJ = 1TO 9

EK#(I, J) = 0#
NEXT J

NEXT I

*-- LOOP ON THE INTEGRATION POINTS -----

FOR L% = 1TO IELM%
CALL SHAPE(L%)
GX# = 0#
GY# = 0#
FOR I = I TO KELM%

GX# = GX# + XYELM#(I, I) * PSI#(I)
GY# = GY# + XYELM#(2, 1) * PSI#(I)
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NEXT I

CALL COEF(GX#, GY#)

------.CALCULATE DXDS# -----

FOR I = 1 TO 2
FORJ = 1TO 2

DXDS#(I, J) = 0#
FOR K = I TO KELM%

DXDS#(I, J) = DXDS#(I, 1) + XYELM#(I, K) *
DPSI#(J, K)

NEXT K
NEXT J

NEXT I

- CALCULATE DSDX# -----

DETJ# = DXDS#(1, 1) * DXDS#(2, 2) - DXDS#(1, 2) * DXDS#(2, 1)

IF DETJ# < 0 GOTO 600

DSDX#(1, 1) = DXDS#(2, 2) / DETJ#
DSDX#(I, 2) = -DXDS#(I, 2) / DETJ#
DSDX#(2, 1) = -DXDS#(2, 1) / DETJ#
DSDX#(2, 2) = DXDS#(1, 1) / DETJ#

.- CALCULATE D(PSI#)/DX AND D(PSI#)/DY----

FOR I = 1 TO KELM%
DPSIX#(I) = DPSI#(1, I) * DSDX#(1, 1) + DPSI#(2, I) *
DSDX#(2, 1)
DPSIY#(I) = DPSI#(I, I) * DSDX#(1, 2) + DPSI#(2, 1) *
DSDX#(2, 2)

NEXT I

.- ACCUMULATE INTEGRATION POINT VALUES OF INTEGRALS -----

* FOR EK, THE ELEMENT STIFFNESS MATRIX

FAC# - DETJ# * WT#(L%)

FOR I 1 TO KELM%
EF#(I) = EF#(I) + F# * PSI#(I) * FAC#
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FORJ = 1TOKELM%
EK#(I, J) = EK#(I, J) + FAC# * (AK# * (DPSIX#(I) *
DPSIX#(J) + DPSIY#(I) * DPSIY#(J)) + C# * PSI#(I)
(DPSIX#(J) + DPSIY#(J)) + B# * PSI#(I) * PSI#(J))

NEXT J
NEXT I

NEXT L%

EXIT SUB

600 PRINT: PRINT " ELEM NR,"; IRE%; ", JACOBIAN=,"; DETJ#; ", IT'S_
BAD"

INPUT "HIT RETURN TO CONTINUE"; PAUSE$
STOP

END SUB

'========-----SUB ELMDAT----------------
SUB ELMDAT (IRE%, NROW%, NCOL%, NGLO%(), XYGLO#())

SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED NELM%(), XYELM#()

------ IDENTIFY ROW AND COL INDICES OF ELEM LOWER L-H NODE -----

NLQ% = 1
IF KELM% < > 4 THEN NLQ% = 2
N% = 0
MROW% = NROW% - 1
MCOL% - NCOL% - 1
FOR I = 1 TO MROW% STEP NLQ%

FOR J = 1 TO MCOL% STEP NLQ%
IF NGLO%(I, J) = 0 GOTO 700
IF NGLO%(I, (J + NLQ%)) = 0 GOTO 700
IF NGLO%((I + NLQ%), J) = 0 GOTO 700
IF NGLO%((I + NLQ%), (J + NLQ%)) = 0 GOTO 700
N% = N% + 1
IF N% < IRE% GOTO 700
IE% = I
JE% =J
GOTO 710

700 NEXT J
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NEXT I

- PUT GLOBAL NODE NRS AND X-Y COORDS INTO ELEM ARRAYS -----

710 K = I
IE1% = IE% + 1
JEI% =JE% + 1
FOR I = 1 TO 2

FOR J = I TO 9
XYELM#(I, J) = 0#

NEXT J
NEXT I
IF KELM% < > 4 GOTO 720

*-- LINEAR (4-NODE) ELEM -----

FOR I = IE% TO IE1%
FOR J = JE% TO JE1%

IFI =IE% ANDJ =JE1%THENK =2
IFI = IE1% ANDJ =JEI%THENK = 3
IFI = IE1% ANDJ = JE% THENK= 4
NELM%(K) = NGLO%(I, J)
FOR L = I TO 2

XYELM#(L, K) = XYGLO#(L, I, J)
NEXT L

NEXT J
NEXT I

EXIT SUB

------.QUADRATIC/BIQUADRATIC (8/9-NODE) ELEMS -----

720 IE2% = IE% + 2
JE2% =JE% +2
FOR I = IE% TO IE2%

FOR J = JE% TO JE2%
IFI = IE% AND J = JE2% THEN K = 2
IF - IE2% AND J = JE2% THEN K = 3
IFI = IE2% AND J = JE% THEN K = 4
IF I =IE% AND J = JEI% THEN K = 5
IFI = IEI% ANDJ=JE2%THENK= 6
IFI = IE2% ANDJ = JEI% THENK = 7
IF I =IEI% AND J = JE% THEN K = 8
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IF I = IEI% AND J = JEI% THEN K = 9
NELM%(K) = NGLO%(I, J)
FOR L = I TO 2

XYELM#(L, K) = XYGLO#(L, I, J)
NEXT L

NEXT J
NEXT I

END SUB

'==================SUB ENDAT---------------

SUB ENDAT (NAME$)

SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED VCT%(), EDFL$
LET NAME$ = EDFL$
CLS : PRINT : PRINT : PRINT : PRINT

INPUT "Do you want to work with an existing data file (Y/N)"; Y$
IF Y$ = "y" OR Y$ = "Y" THEN CALL EXIST ELSE 800
GOTO 850

-- ENTER MESH DATA BY SUBDOMAIN -----

800 INPUT "Name of new datafile"; EDFL$

OPEN EDFL$ + ".MSH" FOR OUTPUT AS #1
OPEN EDFL$ + ".TMP" FOR OUTPUT AS #2
OPEN EDFL$ + ".DAT" FOR OUTPUT AS #3

CLS : PRINT: PRINT
INPUT " Enter the nr of rows of subdomains"; NRSD%

REDIM NCSD%(NRSD%)
REDIM VCT%(NRSD%)

PRINT: PRINT
PRINT "Enter the nr of subdomains in each row - start with row 1"
PRINT "and the position of the lower left node of the first
PRINT "active subdomain in the cooresponding row"

PRINT
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FOR I = I TO NRSD%
PRINT "Subdomains in row #"; 1;
INPUT NCSD%(I)
PRINT "Position of first active subdomain in row 1"; I;
INPUT VCT%(I)
PRINT

NEXT I
NSD% =0

FOR I 1TO NRSD%
NSD% = NSD% + NCSD%(I)

NEXT I

IF NSD% < 16 GOTO 810
PRINT: PRINT
PRINT " Nr of subdomains is "; NSD%; "the limit is 16"
PRINT: PRINT
GOTO 800
PRINT: PRINT

810 PRINT
PRINT " For the domain, enter:": PRINT
PRINT SPC(4); "- nr of nodes per elem (4,8 or 9)"
PRINT SPC(4); "- nr of integration points per elem": PRINT
INPUT KELM%: INPUT IELM%
PRINT: PRINT
INPUT "Are all domain entries correct? y/n"; IY$
IF IY$ = "N" OR IY$ = "n" GOTO 800

REDIM ICR%(2, NSD%), XSD#(2, KELM%, NSD%)

PRINT: PRINT
PRINT " Number subdomains lEFt to right - start with row 1"
FORK= 1 TO NSD%

820 CLS
PRINT: PRINT: PRINT
PRINT " For subdomain "; K; " enter:": PRINT
PRINT SPC(4); " - nr of rows of elems in the subdomain"
PRINT SPC(4); " - nr of elems per row in the subdomain": PRINT
INPUT ICR%(2, K): INPUT ICR%(I, K)
PRINT: PRINT
PRINT " Enter x-y coords of key nodes of subdomain"; K
PRINT SPC(4); "- 4,8,or 9 sets of x-y coords (linear,quadratic,or biquad)"
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PRINT SPC(6); " do comers Ist, CCW from lower LH comer, then"
PRINT SPC(6); " do mid-side nodes, if any, CCW from lower mid-side_
node"
PRINT SPC(6); " do center node last, if any.": PRINT
FOR J = 1 TO KELM%

FOR I = 1 TO 2
INPUT XSD#(I, J, K)

NEXT I
NEXT J

PRINT: PRINT
PRINT "Are data for subdomain "; K; " correct? y/n": PRINT
INPUT IY$
IF IY$ = "N" OR IY$ = "n" GOTO 820

NEXT K

INPUT "Want to see your data entries? y/n"; IY$
IF IY$ = "N" OR IY$ = "n" GOTO 840

DISPLAY DATA ENTRIES AND PERMIT RE-ENTRY, IF DESIRED -----

PRINT
PRINT SPC(1); "Nr of subdomains is "; NSD%; " nr of rows of subdomains_
is"; NRSD%
FOR K = 1 TO NSD%

CLS
PRINT: PRINT: PRINT: PRINT
PRINT SPC(1); "Sub-"; SPC(6); "Elem"; SPC(6); "Elem"; SPC(6);_
"Rows";
SPC(6); "Cols"
PRINT SPC(1); "Domain"; SPC(4); "Nodes"; SPC(4); "Int Pt"; SPC(5);
"Elems"; SPC(5); "Elems"
PRINT SPC(2); K; SPC(7); KELM%; SPC(7); IELM%; SPC(7);_
ICR%(2, K); SPC(7); ICR%(1, K)
PRINT
PRINT SPC(10); "Key nodes of subdomain nr"; K
PRINT
PRINT "Coords";

FOR I = I TO KELM%
PRINT SPC(8); USING "###"; I;

NEXT I
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PRINT
PRINT;"X ""
FOR I = I TO KELM%

PRINT SPC(5); USING "###.##"; XSD#(I, I, K);
NEXT I

PRINT
PRINT;" Y -.
FOR I = 1 TO KELM%

PRINT SPC(5); USING "###.##"; XSD#(2, I, K);
NEXT I

PRINT
INPUT "Are these correct? y/n"; IY$: PRINT
IF IY$ = "Y" OR IY$ = "y" GOTO 830

PRINT
PRINT "For subdomain"; K; " re-enter:"
PRINT SPC(4); "- nr of rows of elems"
PRINT SPC(4); "- nr of elems per row"
PRINT SPC(4); "- x-y coords of its key nodes": PRINT
FOR J = 1 TO KELM%

INPUT ICR%(2, K)
INPUT ICR%(I, K)
FOR I = 1TO 2

INPUT XSD#(I, J, K)
NEXT I

830 NEXT J
NEXT K

------ INPUT DATA INTO REUSABLE FILE -----

840 PRINT #3, NSD%, NRSD%
PRINT #3, KELM%, IELM%
FOR K = 1 TO NRSD%

PRINT #3, NCSD%(K), VCT%(K)
NEXT K

FORK = 1 TONSD%
PRINT #3, ICR%(1, K), ICR%(2, K)
FOR J = 1 TO KELM%

PRINT #3, XSD#(1, J, K), XSD#(2, J, K)
NEXT J
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NEXT K

------ PRINT DATA TO FILE----

850 PRINT #1,
PRINT #1, "----- Subdomain entry data --------
FOR K = I TO NSD%

PRINT #1, : PRINT #1,
PRINT #1, "---------------------------
PRINT #1,
PRINT #1, SPC(1); "Sub-"; SPC(6); "Elem"; SPC(6); "Elem"; SPC(6);_
"Rows"; SPC(6); "Cols"
PRINT #1, SPC(1); "Domain"; SPC(4); "Nodes"; SPC(4); "Int Pt";_
SPC(5);"Elems"; SPC(5); "Elems"
PRINT #1, SPC(2); K; SPC(7); KELM%; SPC(7); IELM%; SPC(7);
ICR%(2, K); SPC(7); ICR%(1, K)
PRINT #1,
PRINT #1, SPC(10); " Key nodes of subomain nr "; K
PRINT #1, ; "Coords";
FOR I = 1 TO KELM%

PRINT #1, SPC(8); USING "###"; I;
NEXT I
PRINT #1,
PRINT #1,;" X ";
FOR I = I TO KELM%

PRINT #1, SPC(5); USING "###.##"; XSD#(1, I, K);
NEXT I

PRINT #1,
PRINT #1,;" Y ""
FOR I = 1 TO KELM%

PRINT #1, SPC(5); USING "###.##"; XSD#(2, I, K);
NEXT I

NEXT K
PRINT #1,

END SUB

---------- SUB EXIST= U=49-T-

SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED VCT%()
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PRINT: PRINT: PRINT: PRINT
INPUT "Name of existing datafile"; EDFL$

------ OPEN EXISTING DATA FILE AND READ DATA-

OPEN EDFL$ + ".MSH" FOR OUTPUT AS #1
OPEN EDFL$ + ".TMP" FOR OUTPUT AS #2
OPEN EDFL$ + ".DAT" FOR INPUT AS #3

iNPUT #3, NSD%, NRSD%
INPUT #3, KELM %, IELM %

DIM NCSD%(NRSD%), ICR%(2, NSD%), XSD#(2, KELM%, NSD%)
DIM VCT%(NRSD%)

FOR K = 1 TO NRSD%
INPUT #3, NCSD%(K), VCT%(K)

NEXT K

FOR K = I TO NSD%
INPUT #3, ICR%(1, K), ICR%(2, K)
FOR J = I TO KELM%

INPUT #3, XSD#(I, J, K), XSD#(2, J, K)
NEXT J

NEXT K

PRINT: PRINT: PRINT
PRINT "Would you like to change the current number
PRINT "of intigration points (currently - "; IELM%; ")(Y/N)";
INPUT; Y$
IF Y$ = "N" OR Y$ = "n" THEN 900
PRINT: PRINT
INPUT "New number of intigration points"; IELM%

900 END SUB

V============= --SUB FLOW1= = = = == = = =

SUB FLOW1 (NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%, U#())

REDIM XX#(O TO NROW% + 1, 0 TO NCOL% + 1, 2)
REDIM NNGLO%(0 TO NROW% + 1, 0 TO NCOL% + 1)
REDIM FF#(NROW% + 1, NCOL% + I)
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REDIM XX(IGLO%), YY(IGLO%)

------.CHANGE ASPECT RATIO IF NOT A SQUARE THEN SQUARE -----

FOR I = 1 TO NROW%
FOR J = I TO NCOL%

NNGLO%(I, J) = NGLO%(I, J)
FORM = 1TO 2

XX#(I, J, M) = XYGLO#(M, I, J)
NEXT M
IF NGLO%(I, J) = 0 THEN 1000
IJ = IJ + 1
FF#(I, J) = U#(IJ)

1000 NEXT J
NEXT I

-- SET SCREEN -----

1010 SCREEN 0
CLS
KEY OFF: DEFINT I-N
SCREEN 11: F$ = "####.##"
ASP = .46
CLS

XMAX = XX#(1, 1, 1)
YMAX = XX#(1, 1, 2)
XMIN = XX#(1, 1, 1)
YMIN = XX#(l, 1, 2)
FMAX = FF#(1, 1)
FMIN = FF#(1, 1)

FOR I I 1 TO NROW%
FOR J = I TO NCOL%

IF XMAX < XX#(I, J, 1) THEN XMAX = XX#(I, J, 1)
IF YMAX < XX#(I, J, 2) THEN YMAX = XX#(I, J, 2)
IF XMIN > XX#(I, J, 1) THEN XMIN = XX#(I, J, 1)
IF YMIN > XX#(I, J, 2) THEN YMIN = XX#(I, J, 2)
IF NNGLO%(I, J) = 0 THEN 1020
IF FMAX < FF#(I, J) THEN FMAX = FF#(I, J)
IF FMIN > FF#(I, J) THEN FMIN = FF#(I, J)

1020 NEXT J
NEXT I
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NNf1

LOCATE 17, 25: INPUT "# OF FLOW-LINES"; INTV!
LOCATE 18, 25: INPUT "CONTONTOUR SKIP INTV"; PP
LOCATE 19, 25: INPUT "OVERLAP WITH MESH (Y/N)"; msh$

XL = (XMAX - XMIN)
YL = (YMAX - YMIN)
XO= XMIN-XL/10
YO = YMIN-YL/10

VIEW (51, 1)-(639, 430)

AA = 538 * ASP / 167

IFXL/YL > AATHENYL = XL/AA
IFXL/YL < AATHENXL = YL*AA
XMAX = XO + 1.2 * XL: YMAX = YO + 1.2 *YL
WINDOW (XO, YO)-(XMAX, YMAX)
CLS
IF msh$ = "Y" OR msh$ = "y" THEN GOTO 1070

------ FIND BOUNDRY LINES -----

FOR I = 1 TO (NROW%)
FOR J = 1 TO (NCOL%)

IF NNGLO%(I, J) = 0 THEN 1060
Xl = XX#(I, J, 1)
Y1 = XX#(I, J, 2)
IF NNGLO%(I + 1, J + 1) = 0 THEN 1030
IF NNGLO%(I + 1, J) = 0 OR NNGLO%(I - 1, J) =0 THEN_
1030
IF NNGLO%(I - 1, J + 1) = 0 AND NNGLO%(I - 1, J) < > 0
THEN 1030 ELSE 1040

1030 X2 = XX#(I, J + 1, 1)
Y2 = XX#(I, J + 1, 2)
IF X2 = 0 THEN 1040
LINE (Xl, Y1)-(X2, Y2)

1040 IF NNGLO%(I + 1, J + 1) = 0 THEN 1050
IF NNGLO%(I, J + 1) 0 OR NNGLO%(I, J - 1) = 0
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THEN 1050
IF NNGLO%(I + 1, J - 1) 0 AND NNGLO%(I, J - 1) < > 0_
THEN 1050 ELSE 1060

1050 X2 = XX#(I + 1, J, 1)
Y2 = XX#(I + 1, J, 2)
IF Y2 = 0 THEN 1060
LINE (X1, Y1)-(X2, Y2)

1060 NEXT J
NEXT I

GOTO 1100

------.DRAW MESH -----

1070 FOR I = 1 TO (NROW%)
FOR J = 1 TO (NCOL%)

IF NNGLO%(I, J) = 0 THEN 1090
Xl = XX#(I, J, 1)
Y I = XX#(I, J, 2)

IF NNGLO%(I, J + 1) = 0 THEN 1080
IF J = NCOL% THEN 1080
X2 = XX#(I, J + 1, 1)
Y2 = XX#(I, J + 1, 2)

LINE (Xl, YI)-(X2, Y2)

1080 IF I = NROW% THEN 1090
IF NNGLO%(I + 1, J) = 0 THEN 1090
X2 = XX#(I + 1, J, 1)
Y2 = XX#(I + 1, J, 2)

LINE (XI, Y1)-(X2, Y2)
1090 NEXT J

NEXT I

*-- PROGRAM TO CACULATE FLOW LINES-----

1100 OPEN "FLO.TMP" FOR INPUT AS #4
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INPUT #4, A, B
INPUT #4, C, D

INPUT #4, CMIN
INPUT #4, BX1, BY1
INPUT #4, BX2, BY2
INPUT #4, ZEROI, ZERO2

REDIM X3(100), Y3(100)
REDIM X4(100), Y4(100)

REDIM HOLDX!(INTV!)
REDIM HOLDY!(INTV!)
REDIM HOLDM!(INTV!)

1110 AA - SQR((BX2 - BXI) - 2 + (BY2 - BY1) A 2) / (INTV! + 1)
X1 - BX1: Yl = BY1
X2 - BX2: Y2 = BY2
LINE (X2, Y2)-(XI, Y1)

L=0
PPCNT = 0

1140 PPCNT = PPCNT + 1
N=I
K=I
INPUT #4, XINE
IF XINE = -100000 THEN GOTO 1280

FORI = ITO100
INPUT #4, X3(1), Y3(I)
IF X3(1) = 0 AND Y3(1) = 0 THEN 1165
INPUT #4, X4(I), Y4(1)
IF PPCNT = PP THEN 1150 ELSE 1160

1150 LINE (X3(1), Y3(1))-(X4(1), Y4(I))
1160N = N + 1

NEXT I

1165 IFL <> 0THEN 1170
IF X1 < > X2 THEN 1166
FOR 1 = (Y1 + AA) TO Y2 STEP AA

HOLDXI(K) = XI
HOLDY!(K) = I!
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K=K+I
NEXT I!
K=I
GOTO 1170

1166 IF Y1 < > Y2 THEN 1167
FOR I! = (X1 + AA) TO X2 STEP AA

HOLDX!(K) = I!
HOLDY!(K) = Y1
K=K+I

NEXT I!
K=I
GOTO 1170

1167

1170 IF PPCNT = PP THEN PPCNT = 0
FOR I! = (SQR(XI A 2 + Y1 - 2) + AA) TO (SQR(X2 A 2 + Y2 A 2))_
STEP AA

ZI = HOLDX!(K)
Z2 = HOLDY!(K)
M! = HOLDM!(K)
IF M! = 0 THEN 1190
MI! = -1 /M!

1190 FORBB = ITON- 1

IF X3(BB) = X4(BB) THEN 1270
1200 M2! = (Y4(BB) - Y3(BB)) / (X4(BB) - X3(BB))

A# = (X4(BB) - X3(BB)) / 50

FOR J! = X3(BB) TO X4(BB) STEP A#

Z3 =J!
Z4 = M2! * (Z3 - X3(BB)) + Y3(BB)

IF M2! < > 0 THEN 1202
MI! = -1IM!
X = Z1

Y MI! *(X -Z3) + Z4
GOTO 1207



93

1202 IF M! < > 0 THEN 1205
M12! = -1 / M2!
X=Z1

Y = M12! *(X -ZI) + Z2
GOTO 1207

1205 IF M! = M2! THEN 1260
MI! =-1 / M!
M12! = -1 / M2!
X = (Z4 - Z2 + MI!*'* ZI - M12! * Z3) / (MI! - M12!)
Y = MI! *(X -Z1) + Z2

1207 LEGTHI! = SQR((ZI - X) A 2 + (Z2 - Y) A 2)

LEGTH2! = SQR((Z3 - X) A 2 + (Z4 - Y) A 2)

IF J! = X3(BB) THEN 1220

IF (LEGTHI! + LEGTH2!) > (LEGI! + LEG2!) THEN 1220

XSS = X
YSS = Y
MS! = M2!

ZS3 = Z3
ZS4 = Z4

1220 LEGI! = LEGTHI!
LEG2! = LEGTH2!

NEXT J!
NEXT BB

IF Zi < XSS AND XSS < ZS3 THEN 1230
IF ZI > XSS AND XSS > ZS3 THEN 1230 ELSE 1240

1230 LINE (ZI, Z2)-(XSS, YSS)
LINE (ZS3, ZS4)-(XSS, YSS)
GOTO 1250

1240 LINE (ZS3, ZS4)-(Z1, Z2)

1250 HOLDX!(K) = ZS3
HOLDY!(K) = ZS4
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HOLDM!(K) = MS!

1260K = K + 1

1270 NEXT I!
L=L+ I
GOTO 1140

1280 INPUT #4, CTR
INPUT #4, X3, Y3
INPUT #4, X4, Y4
LINE (X3, Y3)-(X4, Y4)

K=I
FOR I! - (Y1 + AA) TO Y2 STEP AA

ZI HOLDX!(K)
Z2 HOLDY!(K)
M! HOLDM!(K)
MI! -1 / M!

IF X4 = X3 THEN 1285 ELSE 1290
1285 X = X3

Y = MI!*(X-Z1) +Z2
GOTO 1295

1290 M2! = (Y4 - Y3) / (X4 - X3)
X = (Z4 - Z2 + MI! * Z1 - M2! * Z3) /(M! - M2!)
Y = MI! *(X -ZI) + Z2

1295 LINE (ZI, Z2)-(X, Y)
K=I+K

NEXT I!

CLOSE #4
LOCATE 29, 5: INPUT "WANT TO REDRAW WITH NEW FLOWLINE_
INTERVAL (Y/N)"; RED$
IF REDS = "Y" OR RED$ = "y" THEN 1010

END SUB

DEFSNG I-N
SUB=MESH=(NROW ==SUB MESHNCL==L====L===L=

SUB MESH (NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%)
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SHARED PSI#(), DPSI#()
SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()
SHARED XXI#, EETA#
SHARED VCT%()

DIM PSI#(KELM%), DPSI#(2, KELM%)

L% =0

------.ASSUME LINEAR SUBDOMAINS AND ELEMENTS; ------
* ADJUST IF QUADRATIC

NLQ% = 1
IF KELM% < > 4 THEN NLQ% = 2

------ ZERO OUT THE GLOBAL X-Y COORD AND NODE NR ARRAYS -----

FOR I = I TO NROW%
FOR J = 1 TO NCOL%

NGLO% = 0
FORM = 1T02

XYGLO#(M, I, J) = 0#
NEXT M

NEXT J
NEXT I

.- LOOP ON SUBDOMAINS TO CALCULATE GLOBAL X-Y COORDS -----

K% =0
10% -0
JO% =0
ISE% =
KI% =1

LOOP ON ROWS OF SUBDOMAINS; SET LOOP PARAMETERS; ------
' CALC ETA INCREMENT

FOR LL% = 1 TO NRSD%
IX% = ISE%
K% =K% + I
NRSE% = NLQ% * ICR%(2, KI%)
ISE% = ISE% + NRSE%
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DNR# = NRSE%
DETA# = 2# 1 DNR#
JSE% = 1

------.LOOP ON SUBDOMAINS IN ROW; SET LOOP PARAMETERS; SET XI -----
AND ETA TO INITIAL VALUES; CALCULATE XI INCREMENT

FOR KK% = I TO NCSD%(LL%)
K% = K% + 1
XIO# = -I#
ETAO# =-I
IF LL% = 1 THEN GOTO 1300
IF KK% = 1 THEN JSE% = VCT%(LL%)

1300 JY% = JSE%
NCSE% - NLQ% * ICR%(1, K%)
JSE% = JSE% + NCSE%
DNC# - NCSE%
DXI# = 2# / DNC#

*-- RE-ZERO OUT GLOBAL X-Y COORD ARRAY BY SUBDOMAIN -----

FOR I = IX% TO ISE%
FORJ = JY% TOJSE%

FORM = 1TO2
XYGLO#(M, I, J) = 0#

NEXT M
NEXT J

NEXT I

'----CALCULATE XI-ETA COORDS BY NODE ROW WITHIN THE -----
MASTER SUBDOMAIN

XXI# = XIO# - DXI#
FOR I = IX% TO ISE%

FOR J = JY% TO JSE%
XXI# = XXI# + DXI#
EETA# = ETAON

*-- MAP XI-ETA COORDS INTO X-Y COORDS ON THE PHYSICAL -----
* SUBDOMAIN AND IDENTIFY ANY NODE AT THE X-Y ORIGIN
' ON THE PHYSICAL DOMAIN

CALL SHAPE(L%)



97

FORM = 1 TO 2
FOR LA% = 1 TO KELM%

XYGLO#(M, I, J) = XYGLO#(M, I, J) +
XSD#(M, LA%, K%) * PSI#(LA%)

NEXT LA%
NEXT M
XPY# = ABS(XYGLO#(1, I, J)) +
ABS(XYGLO#(2, I, J))
IF XPY# > .001 THEN GOTO 1310
10% = I
JO% = J

1310 NEXT J

- ADJUST STARTING XI-E'1 A# COORDS FOR NEXT ROW OF NODES -----
IN THE SUBDOMAIN

XXI# = XIO# - DXI#
ETAO# = ETAO# + DETA#

NEXT I
NEXT KK%

NEXT LL%

------.ZERO OUT CENTER X-Y COORDS FOR THE 8 NODE -----
* QUADRATIC ELEMENTS

IF KELM% < > 8 THEN GOTO 1320
FOR I = 1 TO (NROW% / 2)

FOR J = 1 TO (NCOL% / 2)
FORK% = 1TO2

XYGLO#(K%, 2 * I, 2 * J) = 0#
NEXT K%

NEXT J
NEXT I

*-- ASSIGN GLOBAL NODE NRS TO NON-ZERO ENTRIES IN GLOBAL -----
I X-Y COORD ARRAY

1320 IGLO% = 0
FOR I = I TO NROW%

FOR J = I TO NCOL%
IF I = 10% AND J = JO% THEN GOTO 1330
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XPY# = ABS(XYGLO#(1, I, J)) + ABS(XYGLO#(2, I, J))
IF XPY# < .001 GOTO 1340

1330 IGLO% = IGLO% + 1
NGLO%(I, J) = IGLO%

1340 NiEXT J
NEX,-T I

END SUB

'==============-SUB PLOT2D-=----------------

SUB PLOT2D (NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%,_
PAUSE$)

SHARED NRE%
DIM XX#(NROW% + 1, NCOL% + 1, 2)
DIM NNGLO%(NROW% + 1, NCOL% + 1)

'------SET SCREEN -----

KEY OFF: DEFINT I-N
SCREEN 11: F$ = "####.##"
ASP = .46

------ CHANGE ASPECT RATIO IF NOT SQUARE THEN SQUARE ------

LOCATE 16, 25
FOR I = I TO NROW%

FOR J = 1 TO NCOL%
NNGLO%(I, J) = NGLO%(I, J)
FOR M = 1 TO 2

XX#(I, J, M) = XYGLO#(M, I, J)
NEXT M

NEXT J
NEXT I

XMAX = XX#(l, 1, 1)
YMAX = XX#(1, 1, 2)
XMIN = XX#(1, 1, 1)
YMIN = XX#(1, 1, 2)

FOR I = 2 TO NROW%
FOR J = 2 TO NCOL%
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IF XMAX < XX#(I, J, 1) THEN XMAX -- XX#(I, J, 1)
IF YMAX < XX#([, J, 2) THEN YMAX = XX#(I, J, 2)
IF XMIN > XX#(I, J, 1) THEN XMIN = XX#(I, J, 1)
IF YMIN > XX#(I, J, 2) THEN YMIN = XX#(I, J, 2)

NEXT J
NEXT I

CLS
XL = (XMAX - XMIN)
YL = (YMAX - YMIN)
XO = XMIN-XL/ 10
YO = YMIN-YL/ 10

VIEW (51, 1)-(639, 350)

AA = 538 * ASP / 167
IFXL/YL > AATHENYL = XL/AA
IFXL/YL < AATHENXL = YL*AA

XMAX = XO -- 1.2 * XL
YMAX = YO + 1.2*YL
WINDOW (XO, YO)-(XMAX, YMAX)

------ DRAW ELEMENTS -----

CLS
FOR I = I TO (NROW%)

FOR J = 1 TO (NCOL%)

XI = XX#(I, J, 1)
YI = XX#(I, J, 2)
IF NNGLO%(I, J) = 0 THEN 1410
IF NNGLO%(I, J + 1) = 0 THEN 1400

IF J = NCOL% THEN 1400
X2 = XX#(I, J + 1, 1)
Y2 XX#(I, J + 1, 2)

LINE (XI, YI)-(X2, Y2)

1400 IF I = NROW% THEN 1410
IF NNGLO%(I + 1, J) = 0 THEN 1410
X2 = XX#(I + 1, J, 1)
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Y2 = XX#(I + 1, J, 2)

LINE (XI, Y1)-(X2, Y2)

1410 NEXT J
NEXT I
NX% = NROW% * NCOL%
LOCATE 27, 14: PRINT "Nr of nodes is"; IGLO%; ", Nr of elems is";
NRE%
LOCATE 28, 14: PRINT "Nr of (real + blank) nodes is"; NX%
LOCATE 29, 14: INPUT "Is the above mesh correct (Y/N)"; PAUSE$
SCREEN 0
CLS

END SUB

DEFSNG I-N
-----=========---SUB PROUT----------------

SUB PROUT (NROW%, NCOL%, NGLO%(), XYGLO#(), IGLO%, U#())

SHARED NCOLE%0, NRE%

------.PRINT DATA TO A FOR,ATED DATA FILE -----

PRINT #1,
PRINT #1, : PRINT #1, SPC(12); *** * * RESULTS *** *"

PRINT #1, : PRINT #1, SPC(5); " Nr of nodes is"; IGLO%; " Nr of elems_
is"; NRE%
PRINT #1, : PRINT #1,
PRINT #1, "node nr"; SPC(6); "x-coord"; SPC(8); "y-coord"; SPC(I 1); "U":
PRINT
PRINT #1,

IG% = 0
FOR I = I TO NROW%

FOR J = I TO NCOL%
IF NGLO%(I, J) = 0 GOTO 1500
IG% =IG% + I
PRINT #1, USING "##N##"; NGLO%(I, J);
FORK = I TO 2

PRINT #1, SPC(7); USING "###.####"; XYGLO#(K, I, J);
NEXT K
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PRINT #1, SPC(6); USING "###.####"; U#(IG%)
1500 NEXT J

NEXT I

------.PRINT DATA TO UNFORMATED DATA FILE -----

PRINT #2, NROW%, NCOL%, IGLO%

IG% = 0
FOR I = 1 TO NROW%

FOR J = 1 TO NCOL%
IF NGLO%(I, J) = 0 GOTO 1510
IG% = IG% + I
PRINT #2, NGLO%(I, J)
FORK = 1TO 2

PRINT #2, XYGLO#(K, I, J)
NEXT K
PRINT #2, U#(IG%)

1510 NEXT J
NEXT I

END SUB

SUB RBC

SUB RBC

SHARED NRB%, KBC%(), VBC#(), ISIDE%(), NRBE%()

DIM KBC%(25), VBC#(2, 25), ISIDE%(25), NRBE%(3, 25)

*-- ENTER BOUNDARY CONDITION DATA BY BOUNDARY STRIPS -----

1600 PRINT
INPUT " Enter the nr of boundary strips, no more than 25"; NRB%
IF NRB% <-= 25 GOTO 1610
PRINT: PRINT "Too many boundary strips": PRINT
GOTO 1600

1610 CLS : PRINT
PRINT " Start with the 1st boundary strip and enter in succession for each"
PRINT SPC(6); "- kind of BC (1 = essential; 2 = natural; 3 = mixed)"
PRINT SPC(6); "- value of BC (U:type 1; K*DU/DN:type 2 positive outward;"
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PRINT SPC(6);" H and UE:type 3 where K*DU/DN = H*(U-UE); H is_
positive"
PRINT SPC(6); "- elem side nr wherE BC is applied (1 for elem nodes 1-2,"
PRINT SPC(6); " 2 for 2-3, 3 for 3-4, or 4 for 4-1)"
PRINT SPC(6); "- lowest elem nr"
PRINT SPC(6); "- highest elem nr"
PRINT SPC(6); "- increment in elem nrs as they vary lowest to highest":
PRINT
NB% = 0

CALL BCDAT(NB%)

------.CORRECT THE BC ENTRIES BY STRIP, AS NEEDED -----

1620 PRINT INPUT " Are all BC data correct? y/n"; IY$
IF IY$ = "Y" OR IY$ = "y" GOTO 1640

1630 PRINT INPUT " Enter nr of the boundary strip to be corrected"; NB%
PRINT • PRINT " Re-enter the 6 or 7 data entries for this strip in the same_
sequence as before": PRINT

CALL BCDAT(NB%)

GOTO 1620

------.DISPLAY THE BC DATA -----

1640 PRINT INPUT " Want the BC data displayed? y/n"; IY$
IF IY$ = "N" OR IY$ = "n" GOTO 1650

PRINT PRINT " Boundary Condition Data-------------
PRINT : PRINT " Bound"; SPC(2); "Type"; SPC(5); "Value of Cond";_
SPC(5);"Side"; SPC(7); "Element nrs"
PRINT " Strip"; SPC(2); "Cond"; SPC(3); "1st Val"; SPC(3); "2nd Val";_
SPC(4); "Nr"; SPC(5); "Low"; SPC(3); "High"; SPC(3); "Incr"

FORI = 1TONRB%
PRINT USING "###"; I; SPC(4);
PRINT USING "####"; KBC%(I);
FORJ = 1TO 2

PRINT ; SPC(4); USING "###.##"; VBC#(J, I);
NEXT J
PRINT SPC(4); USING "###"; ISIDE%(I);
FOR J = I TO 3
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PRINT SPC(4); USING "###"; NRBE%(J, I);
NEXT J
PRINT

NEXT I

PRINT: INPUT " Are these correct? y/n"; IY$

IF IY$ - "N" OR IY$ = "n" GOTO 1630

-- PUT THE BC DATA IN THE OUTPUT -----

1650 PRINT #1, • PRINT #1, "Boundary Condition Data-------------
PRINT #1, • PRINT #1, "Bound"; SPC(2); "Type"; SPC(5); "Value of_
Cond"; SPC(5); "Side"; SPC(7); "Element nrs"
PRINT #1, " Strip"; SPC(2); "Cond"; SPC(3); "lst Val"; SPC(3); "2nd Val";
SPC(4); "Nr"; SPC(5); "Low"; SPC(3); "High"; SPC(3); "Incr"

FOR I= 1 TO NRB%
PRINT #1, USING "###"; I; SPC(4);
PRINT #1, USING "####"; KBC%(I);
FORJ = 1 T02

PRINT #1, ; SPC(4); USING "###.##"; VBC#(J, I);
NEXT J
PRINT #1, SPC(4); USING "###"; ISIDE%(I);
FORJ = 1 T03

PRINT #1, SPC(4); USING "###"; NRBE%(J, I);
NEXT J
PRINT #I,

NEXT I

END SUB

$===============-SUB SETINT----------------

SUB SETINT

SHARED XIETA#(), WT#()
SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#()

DIM XIETA#(2, 9), WT#(9)

IF IELM% = 4 GOTO 1700
IF IELM% = 9 GOTO 1710
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-- THE FOLLOWING DEFINES INTEGRATION POINTS AND -----
I WEIGHTS FOR QUADRILATERAL ELEMENTS

------.FOUR POINT QUADRATURE -----

1700 A4# = I# / SQR(3#)
XIETA#(1, 1) = -A4#
XIETA#(2, 1) = -A4#
XIETA#(I, 2) = A4#
XIETA#(2, 2) = -A4#
XIETA#(1, 3) = -A4#
XIETA#(2, 3) = A4#
XIETA#(1, 4) = A4#
XIETA#(2, 4) = A4#
FOR I = I TO 4

WT#(I) = I#
NEXT I

EXIT SUB

------.NINE POINT QUADRATURE -----

1710 A9# = SQR(.6#)
XIETA#(I, 1) = -A9#
XIETA#(2, 1) = -A9#
XIETA#(I, 2) = 0#
XIETA#(2, 2) = -A9#
XIETA#(I, 3) = A9#
XIETA#(2, 3) = -A9#
XIETA#(I, 4) = -A9#
XIETA#(2, 4) = 0#
XIETA#(I, 5) = 0#
XIETA#(2, 5) = 0#
XIETA#(I, 6) = A9#
XIETA#(2, 6) = 0#
XIETA#(I, 7) = -A9#
XIETA#(2, 7) = A9#
XIETA#(I, 8) = 0#
XIETA#(2, 8) = A9#
XIETA#(I, 9) = A9#
XIETA#(2, 9) = A9#
WT#(I) = 25# / 81#



105

WT#(2) = 40# / 81#
WT#(3) = WT#(1)
WT#(4) = WT#(2)
WT#(5) = 64# / 81#
WT#(6) = WT#(2)
WT#(7) = WT#(1)
WT#(8) = WT#(2)
WT#(9) = WT#(1)

END SUB

---------======----SUB SHAPE==-============

SUB SHAPE (L%)

SHARED PSI#O, DPSI#O
SHARED NSD%, NRSD%, NCSD%0, KELM%, IELM%, ICR%0, XSD#()
SHARED XXI#, EETA#
SHARED XIETA#0, WT#()

*-- CALCULATE THE VALUES OF THE SHAPE FUNCTIONS AND THEIR -----
t DERIVATIVES AT MASTER SUBDOMAIN NODES FOR MESH
* GENERATION AND MAPPING (L=O) AND AT APPROPRIATE

INTEGRATION POINTS WITHIN ELEMENTS (KO= 1).

LO% = L%
XI# = XXI#
ETA# = EETA#
IF LO% = 0 GOTO 1800
XI# = XIETA#(I, LO%)
ETA# = XIETA#(2, LO%)

1800 IF KELM% = 4 GOTO 1810
IF KELM% = 8 GOTO 1820
IF KELM% - 9 GOTO 1830

------.LINEAR SHAPE FUNCTIONS AND DERIVATIVES -----
1 4 NODE QUAD ELEMENT

1810 PSI#(1) = .25# * (1# - XIW) * (1# - ETA#)
PSI#(2) = .25# * (1# + XI#) * (1# - ETA#)
PSI#(3) = .25# * (1# + XIW) * (1# + ETA#)
PSI#(4) = .25# * (1# - Xl#) * (1# + ETA#)
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IF LO% = 0 THEN EXIT SUB

DPSI#(I, 1) = -.25# * (1# - ETA#)
DPSI#(2, 1) = -.25# * (1# - XI#)
DPSI#(I, 2) = .25# * (1# - ETA#)
DPSI#(2, 2) = -.25# * (1# + XI#)
DPSI#(1, 3) = .25# * (1# + ETA#)
DPSI#(2, 3) = .25# * (1# + XI#)
DPSI#(1, 4) = -.25# * (1# + ETA#)
DPSI#(2, 4) = .25# * (1# - XI#)

EXIT SUB

---- .. QUADRATIC SHAPE FUNCTIONS AND DERIVATIVES -----
1 8 NODE QUAD ELEMENT

1820 PSI#5() = .25# * (1# - XI#) * (1# - ETA#) * (-1# - XI# - ETA#)
PSI#(2) = .25# * (1# + XI#) * (1# - ETA#) * (-1# + XI# - ETA#)
PSI#(3) = .25# * (1# + XI#) * . # + ETA#) * (-1# + XI# + ETA#)
PSI#(4) = .25# * (1# - XI#) * (1# + ETA#) * (-I# - XI# + ETA#)
PSI#(5) = .5# * (1# - XI# A 2#) * (1# - ETA#)
PSI#(6) = .5# * (1# + XI#) * (1# - ETA# - 2#)
PSI#(7) = .5# * (1# - XI# A 2#) * (1# + ETA#)
PSI#(8) = .5# * (1# - XI#) * (1# - ETA# A 2#)

IF LO% = 0 THEN EXIT SUB

DPSI#(1, 1) = .25# * (1# - ETA#) * (2# * XI# + ETA#)
DPSI#(2, 1) = .25# * (1# - XI#) * (XI# + 2# * ETA#)
DPSI#(1, 2) = .25# * (1# - ETA#) * (2# * XI# - ETA#)
DPSI#(2, 2) = .25# * (1# + XI#) * (-XI# + 2# * ETA#)
DPSI#(I, 3) = .25# * (1# + ETA#) * (2# * XI# + ETA#)
DPSI#(2, 3) = .25# * (1# + XI#) * (XI# + 2# * ETA#)
DPSI#(1, 4) = .25# * (1# + ETA#) * (2# * XI# - ETA#)
DPSI#(2, 4) = .25# * (I# - XI#) * (-XI# + 2# * ETA#)
DPSI#(I, 5) = -XI# * (1# - ETA#)
DPSI#(2, 5) = -.5# * (1# - XI# A 2#)
DPSI#(1, 6) = .5# * (1# - ETA# A 2#)
DPSI#(2, 6) = -ETA# * (1# + XI#)
DPSI#(I, 7) = -XI# * (I# + ETA#)
DPSI#(2, 7) = .5# * (1# - XI# A 2#)
DPSI#(I, 8) = -.5# * (1# - ETA# A 2#)
DPSI#(2, 8) = -ETA# * (1# - XI#)
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EXIT SUB

-- BIQUADRATIC SHAPE FUNCTIONS AND DERIVATIVES ------
* 9 NODE BIQUAD ELEMENT

1830 PSI#(1) = .25# * XI# * ETA# * (Xl# - 1#) * (ETA# - I#)
PSI#(2) = .25# * XI# * ETA# * (XI# + 1#) * (ETA# - 1#)
PSI#(3) = .25# * XI# * ETA# * (XI# + 1#) * (ETA# + 1#)
PSI#(4) = .25# * XI# * ETA# * (XI# - 1#) * (ETA# + 1#)
PSI#(5) = .5# * (1# - Xl# 2#) * (ETA# A 2# - ETA#)
PSI#(6) = .5# * (XI# A 2# + Xl#) * (1# - ETA# - 2#)
PSI#(7) = .5# * (1# - Xl# - 2#) * (ETA# - 2# + ETA#)
PSI#(8) = .5# * (XI# ^ 2# - Xl#) * (1# - ETA# ^ 2#)
PSI#(9) = (1# - XI# - 2#) * (1# - ETA# - 2#)

IF LO% = 0 THEN EXIT SUB

DPSI#(1, 1) = .25# * (2# * XI# - 1#) * (ETA# - 1#) * ETA#
DPSI#(2, 1) = .25# * XI# * (XI# - 1#) * (2# * ETA# - 1#)
DPSI#(1, 2) = .25# * (2# * XI# + 1#) * ETA# * (ETA# - 1#)
DPSI#(2, 2) = .25# * Xl# * (XI# + 1#) * (2# * ETA# - I#)
DPSI#(1, 3) = .25# * (2# * XI# + 1#) * ETA# * (ETA# + 1#)
DPSI#(2, 3) = .25# * XI# * (XI# + 1#) * (2# * ETA# + 1#)
DPSI#(1, 4) = .25# * (2# * XI# - 1#) * ETA# * (ETA# + 1#)
DPSI#(2, 4) = .25# * XI# * (XI# - 1#) * (2# * ETA# + 1#)
DPSI#(1, 5) = -XI# * ETA# * (ETA# - I#)
DPSI#(2, 5) = .5# * (1# - XI# - 2#) * (2# * ETA# - 1#)
DPSI#(1, 6) = .5# * (2# * XI# + I) * (1# - ETA# A 2#)
DPSI#(2, 6) = -ETA# * XI# * (XI# + 1#)
DPSI#(I, 7) = -XI# * ETA# * (ETA# + 1#)
DPSI#(2, 7) = .5# * (1# - XI#I 2#) * (2# * ETA# + 1#)
DPSI#(1, 8) = .5# * (2# * XI# - 1#) * (1# - ETA# A 2#)
DPSI#(2, 8) = -ETA# * XI# * (XI# - 1#)
DPSI#(1, 9) = -2# * XI# * (1# - ETA# A 2#)
DPSI#(2, 9) = -2# * ETA# * (1# - XII A 2#)

END SUB

---------======----SUB SIZE=================

SUB SIZE (NROW%, NCOL%)
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SHARED NSD%, NRSD%, NCSD%(), KELM%, IELM%, ICR%(), XSD#0
SHARED NCOLE%0, NRE%
SHARED VCT%()

-- ASSUME LINEAR SUBDOMAINS AND ELEMENTS; -----
ADJUST IF QUADRATIC

NLQ% = 1
IF KELM% < > 4 THEN NLQ% = 2
DIM NCOLE%(NRSD%)

------.CALCULATE NR OF ELEMS AND MAX NR OF NODES -----
PER ROW/COL IN THE DOMAIN

FOR I = 1 TO NRSD%
NCOLE%(I) = 0

NEXT I

K% =0
NROW% = 0
NRE% =0
FOR I 1 TO NRSD%

NCOLE%(I) = VCT%(I) - 1
FOR J = I TO NCSD%(I)

K% =K% + 1
NRE% = NRE% + ICR%(1, K%) * ICR%(2, K%)
IF J < > I THEN GOTO 1900
NROW% = NROW% + NLQ% * ICR%(2, K%)

1900 NCOLE%(I) = NCOLE%(I) + NLQ% * ICR%(1, K%)
NEXT J

NEXT I
NCOL% = 1
FOR I = 1 TO NRSD%

IF NCOL% < NCOLE%(I) THEN NCOL% = NCOLE%(I)
NEXT I
NROW% = NROW% + 1
NCOL% = NCOL% + 1

END SUB

'===========-----SUB SOLVE================

SUB SOLVE (IGLO%, IBW%, GF#(), GK#(), U#())
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NN2% = IGLO%
IBB% = IBW%
IBH% = (IBB% /2- .5)
IBHI% = IBH% + 1
IBH2% = IBH% + 2

------.DIVIDE PIVOT ROW ENTRIES BY PIVOT -----

FOR ICOL% = 1 TO NN2%
PIVOT# = GK#(ICOL%, IBH1%)

------.STOP PROGRAM IF MATRIX IS SINGULAR-

IF ABS(PIVOT#) < .00001 THEN GOTO 2000 ELSE 2010
2000 PRINT : PRINT " The stiffness matrix is singular": PRINT

STOP

2010 FOR J = 1 TO IBB%
GK#(ICOL%, J) = (GK#(ICOL%, J) / PIVOT#)

NEXT J

GF#(ICOL%) = (GF#(ICOL%) / PIVOT#)

------.SUBTRACT FROM EACH ROW THE PIVOT ROW MULTIPLIED BY -----
THE ROW'S PIVOT COLUMN ENTRY

FOR I = 1 TO NN2%
IW% = I - ICOL%
IF IW% < 1 OR IW% > IBH% GOTO 2030
JCOL% = IBHI% - IW%
TEMP# = GK#(I, JCOL%)
FOR J = 1 TO IBB%

JP% = J + IW%
IF JP% > IBB% GOTO 2020
GK#(I, J) = GK#(I, J) - GK#(ICOL%, JP%) * TEMP#

2020 NEXT J
GF#(I) = GF#(I) - GF#(ICOL%) * TEMP#

LOCATE 10, 26: PRINT ***************
LOCATE 11, 26: PRINT "* SOLVING MATRIX
LOCATE 12, 26: PRINT "* ";TIME$;"
LOCATE 13, 26: PRINT ****************************"
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2030 NEXT I
NEXT ICOL%

- BACK SUBSTITUTION -----

FORI = 1TONN2%
IB% = NN2% -1 + I
FOR J = IBH2% TO IBB%

IJ% = IB% + J - IBH1%
IF IJ% > NN2% GOTO 2040
GF#(IB%) = GF#(IB%) - GK#(IB%, J) * GF#(UL%)

2040 NEXT J
NEXT I

FORI = 1TONN2%
U#(I) = GF#(I)

NEXT I

END SUB

=-SUB ZSORT===--.......... -

SUB ZSORT

- THIS PROGRAM SORTS CONTOUR DATA FILE -----

OPEN "CONTR.TMP" FOR INPUT AS #4
OPEN "FLO.TMP" FOR OUTPUT AS #5
DIM A!(100), B!(100), C!(100), D!(100), K!(200), L!(200)

INPUT #4, A!, B!
INPUT #4, C!, D!
PRINT #5, A!, B!
PRINT #5, C!, D!
INPUT #4, E!
PRINT #5, E!

FOR I = I TO 3
INPUT #4, A!, B!
PRINT #5, A!, B!

NEXT I
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CLS
2100 N = 1

INPUT #4, E!
PRINT #5, E!

IF E = -100000 THEN 2190

FOR I = I TO 100
INPUT #4, A!(I), B!(I)
IF A!(I) = 0 AND B!(1) = 0 THEN 2110
INPUT #4, C!(I), D!(I)
N=N+I

NEXT I

2110 FOR I = I TO N - 1
LET L!(I) = A!(I)
LET L!(I + (N - 1)) = C!(I)
LET K!(I) = B!(I)
LET K!(I + (N - 1)) = D!(I)

NEXT I

FOR I = ITO (2 * N -2)
FOR J = 1 TO (I - 1)

IF L!(I) = L!(J) AND K!(I) = K!(J) THEN 2120
NEXT J
FORJ = I + 1TO(2*N-2)

IF L!(I) = L!(J) AND K!(I) = K!(J) THEN 2120
NEXT J
AA! = L!(I)
BB! - K!(I)
GOTO 2130

2120 NEXT I

2130 FOR I = I TO 40
FORJ = ITON- I

IF A!(J) = AA! AND B(I) = BB! THEN 2140 ELSE 2150
2140 AA! = C!(J)

BB! = D!(J)
PRINT #5, A!(J), B!(J)
PRINT #5, C!(J), D!(J)
D(J) = RND
GOTO 2180

2150 IF C!(J) = AAM AND D!(J) = BB! THEN 2160 ELSE 2170
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2160 AA! = A!(J)
BB! = B!(J)
PRINT #5, C!(J), D!(J)
PRINT #5, A!(J), B!(J)
B!(J) = RND
GOTO 2180

2170 NEXT J
2180 NEXT I

LOCATE 10, 26: PRINT "** * *
LOCATE 11, 26: PRINT "* SORTING CONTOUR DATA "

LOCATE 12, 26: PRINT "* ";TIME$; "
LOCATE 13, 26: PRINT *

PRINT #5, 0, 0
GOTO 2100

2190 INPUT #4, CTR
PRINT #5, CTR

INPUT #4, A!, B!
INPUT #4, C!, D!
PRINT #5, A!, B!
PRINT #5, C!, D!

CLOSE #4, #5

END SUB
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Finite Element Mesh
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Hrof nodes is7, 7 Hrof eleas is 55
Nrof (real + blank) nodes is 99
Is the above mesh correct (Y/H)? fl

Figure B. I
Finite Element Mesh



Contour Graph
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Figure B.2
Contour Graph



Flow Line Graph
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Figure B.3
Flow Line Graph



Data File "Example.dat"
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Data File "Example Dat"

Preliminary Data
5 3
4 4
2 1
1 4
2 4

Subdomain 1
3 3
1 1
3 1
3 2
1 2

Subdomain 2
5 3
3 1
5 1
5 2
3 2

Subdomain 3
5 2
3 2
5 2
5 3
3 3

Subdomain 4
5 3
3 3
5 3
5 4
3 4

Sumdomain 5
2 3
5 3
7 3
7 4
5 4



Data File "Exainple.msh"
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Data File -Examplemsh"

- -Subdomain entry data

- - - - - -- For file example--------
Sub- Elem Elem Rows Cols
Domain Nodes Int Pt Elems Elems

1 4 4 3 3

Key nodes of subdomain nr 1
Coords 1 2 3 4

X 1.00 3.00 3.00 1.00
Y 1.00 1.00 2.00 2.00
- - - - - -- For file example--------
Sub- Elem Elem Rows Cols
Domain Nodes Int Pt Elems Elems

2 4 4 3 5

Key nodes of subdomain nr 2
Coords 1 2 3 4

X 3.00 5.00 5.00 3.00
Y 1.00 1.00 2.00 2.00
- - - - - -- For file example--------
Sub- Elem Elem Rows Cols
Domain Nodes Int Pt Elems Elems

3 4 4 2 5

Key nodes of subdomain nr 3
Coords 1 2 3 4

X 3.00 5.00 5.00 3.00
Y 2.00 2.00 3.00 3.00
- - - - - -- For file example--------
Sub- Elem Elem Rows Cols
Domain Nodes Int Pt Elems Elems

4 4 4 3 5

Key nodes of subdomain nr 4
Coords 1 2 3 4

X 3.00 5.00 5.00 3.00
Y 3.00 3.00 4.00 4.00
- - - - - -- For file example--------
Sub- Elem Elem Rows Cols
Domain Nodes Int Pt Elems Elems

5 4 4 3 2

Key nodes of subdomain nr 5
Coords 1 2 3 4

X 5.00 7.00 7.00 5.00
Y 3.00 3.00 4.00 4.00
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Boundary Condition Data- - -----------

Bound Type Value of Cond Side Element nrs
Strip Cond 1st Val 2nd Val Nr Low High Incr

1 1 15.00 0.00 4 1 17 8
2 1 30.00 0.00 2 41 55 7

* * * * RESULTS * * * *

Nr of nodes is 74 Nr of elems is 55

node nr x-coord y-coord U

1 1.0000 1.0000 15.0000
2 1.6667 1.0000 16.7397
3 2.3333 1.0000 18.4553
4 3.0000 1.0000 19.9991
5 3.4000 1.0000 20.7382
6 3.8000 1.0000 21.2974
7 4.2000 1.0000 21.6815
8 4.6000 1.0000 21.9055
9 5.0000 1.0000 21.9793

10 1.0000 1.3333 15.0000
11 1.6667 1.3333 16.7390
12 2.3333 1.3333 18.4718
13 3.0000 1.3333 20.0566
14 3.4000 1.3333 20.8046
15 3.8000 1.3333 21.3587
16 4.2000 1.3333 21.7360
17 4.6000 1.3333 21.9570
18 5.0000 1.3333 22.0302
19 1.0000 1.6667 15.0000
20 1.6667 1.6667 16.7349
21 2.3333 1.6667 18.5053
22 3.0000 1.6667 20.2479
23 3.4000 1.6667 21.0157
24 3.8000 1.6667 21.5399
25 4.2000 1.6667 21.8958
26 4.6000 1.6667 22.1104
27 5.0000 1.6667 22.1824
28 1.0000 2.0000 15.0000
29 1.6667 2.0000 16.7452
30 2.3333 2.0000 18.4559
31 3.0000 2.0000 20.6899
32 3.4000 2.0000 21.3872
33 3.8000 2.0000 21.8225
34 4.2000 2.0000 22.1528
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35 4.6000 2.0000 22.3601
36 5.0000 2.0000 22.4396
37 3.0000 2.5000 22.0092
38 3.4000 2.5000 22.0714
39 3.8000 2.5000 22.3549
40 4.2000 2.5000 22.6621
41 4.6000 2.5000 22.9493
42 5.0000 2.5000 23.0102
43 3.0000 3.0000 22.5774
44 3.4000 3.0000 22.6562
45 3.8000 3.0000 22.8629
46 4.2000 3.0000 23.1927
47 4.6000 3.0000 23.6290
48 5.0000 3.0000 24.3566
49 6.0000 3.0000 27.4485
50 7.0000 3.0000 30.0000
51 3.0000 3.3333 22.8329
52 3.4000 3.3333 22.9045
53 3.8000 3.3333 23.1180
54 4.2000 3.3333 23.4722
55 4.6000 3.3333 23.9958
56 5.0000 3.3333 24.7429
57 6.0000 3.3333 27.3826
58 7.0000 3.3333 30.0000
59 3.0000 3.6667 22.9841
60 3.4000 3.6667 23.0569
61 3.8000 3.6667 23.2764
62 4.2000 3.6667 23.6508
63 4.6000 3.6667 24.1981
64 5.0000 3.6667 24.9337
65 6.0000 3.6667 27.3781
66 7.0000 3.6667 30.0000
67 3.0000 4.0000 23.0347
68 3.4000 4.0000 23.1080
69 3.8000 4.0000 23.3304
70 4.2000 4.0000 23.7108
71 4.6000 4.0000 24.2628
72 5.0000 4.0000 24.9922
73 6.0000 4.0000 27.3811
74 7.0000 4.0000 30.0000



Data File "Exainple.ctr"
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Data File "Example.ctr"

-CONTOUR DATA FOR RUN example -----

CONTOUR VALUE X-COORD Y-COORD

15.0000 1.0000 1.0000
15.0000 1.0000 2.0000
15.3000 1.1150 1.0000
15.3000 1.1150 1.3333
15.3000 1.1153 1.6667
15.3000 1.1146 2.0000
15.6000 1.2299 1.0000
15.6000 1.2300 1.3333
15.6000 1.2306 1.6667
15.6000 1.2292 2.0000
15.9000 1.3449 1.0000
15.9000 1.3450 1.3333
15.9000 1.3458 1.6667
15.9000 1.3438 2.0000
16.2000 1.4598 1.0000
16.2000 1.4600 1.3333
16.2000 1.4611 1.6667
16.2000 1.4584 2.0000
16.5000 1.5748 1.0000
16.5000 1.5750 1.3333
16.5000 1.5764 1.6667
16.5000 1.5730 2.0000
16.8000 1.6901 1.0000
16.8000 1.6901 1.3333
16.8000 1.6912 1.6667
16.8000 1.6880 2.0000
17.1000 1.8067 1.0000
17.1000 1.8055 1.3333
17.1000 1.8042 1.6667
17.1000 1.8049 2.0000
17.4000 1.9232 1.0000
17.4000 1.9210 1.3333
17.4000 1.9171 1.6667
17.4000 1.9219 2.0000
17.7000 2.0398 1.0000
17.7000 2.0364 1.3333
17.7000 2.0301 1.6667
17.7000 2.0388 2.0000
18.0000 2.1564 1.0000
18.0000 2.1518 1.3333
18.0000 2.1431 1.6667
18.0000 2.1557 2.0000
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18.3000 2.2730 1.0000
18.3000 2.2672 1.3333
18.3000 2.2560 1.6667
18.3000 2.2726 2.0000
18.6000 2.3958 1.0000
18.6000 2.3872 1.3333
18.6000 2.3696 1.6667
18.6000 2.3763 2.0000
18.9000 2.5254 1.0000
18.9000 2.5134 1.3333
18.9000 2.4843 1.6667
18.9000 2.4659 2.0000
19.2000 2.6549 1.0000
19.2000 2.6396 1.3333
19.2000 2.5991 1.6667
19.2000 2.5554 2.0000
19.5000 2.7845 1.0000
19.5000 2.7658 1.3333
19.5000 2.7139 1.6667
19.5000 2.6449 2.0000
19.8000 2.9140 1.0000
19.8000 2.8920 1.3333
19.8000 2.8286 1.6667
19.8000 2.7344 2.0000
20.1000 3.0546 1.0000
20.1000 3.0232 1.3333
20.1000 3.0000 1.4089
20.1000 2.9434 1.6667
20.1000 2.8240 2.0000
20.4000 3.2170 1.0000
20.4000 3.1836 1.3333
20.4000 3.0792 1.6667
20.4000 3.0000 1.7813
20.4000 2.9135 2.0000
20.7000 3.3793 1.0000
20.7000 3.3441 1.3333
20.7000 3.2355 1.6667
20.7000 3.0058 2.0000
20.7000 3.0000 2.0038
21.0000 3.5873 1.0000
21.0000 3.5411 1.3333
21.0000 3.4000 1.6418
21.0000 3.3918 1.6667
21.0000 3.1779 2.0000
21.0000 3.0000 2.1175
21.3000 3.8027 1.0000
21.3000 3.8000 1.0141
21.3000 3.7576 1.3333
21.3000 3.6169 1.6667
21.3000 3.4000 1.9217
21.3000 3.3500 2.0000
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21.3000 3.0000 2.2312
21.6000 4.1151 1.0000
21.6000 4.0558 1.3333
21.6000 3.8675 1.6667
21.6000 3.8000 1.7375
21.6000 3.5955 2.0000
21.6000 3.4000 2.1555
21.6000 3.0000 2.3449
21.9000 4.5901 1.0000
21.9000 4.4968 1.3333
21.9000 4.2078 1.6667
21.9000 4.2000 1.6721
21.9000 3.8939 2.0000
21.9000 3.8000 2.0728
21.9000 3.4000 2.3747
21.9000 3.0000 2.4586
22.2000 3.0000 2.6679
22.2000 3.4000 2.6099
22.2000 3.5814 2.5000
22.2000 3.8000 2.3545
22.2000 4.2000 2.0464
22.2000 4.2911 2.0000
22.2000 4.6000 1.7863
22.2000 5.0000 1.6894
22.5000 3.0000 2.9319
22.5000 3.4000 2.8664
22.5000 3.8000 2.6428
22.5000 3.9889 2.5000
22.5000 4.2000 2.3408
22.5000 4.6000 2.1187
22.5000 5.0000 2.0529
22.8000 3.0000 3.2904
22.8000 3.4000 3.1930
22.8000 3.6782 3.0000
22.8000 3.8000 2.9381
22.8000 4.2000 2.6299
22.8000 4.3920 2.5000
22.8000 4.6000 2.3733
22.8000 5.0000 2.3158
23.1000 5.0000 2.5333
23.1000 4.6000 2.6108
23.1000 4.2000 2.9126
23.1000 4.0876 3.0000
23.1000 3.8000 3.3098
23.1000 3.7662 3.3333
23.1000 3.4786 3.6667
23.1000 3.4000 3.9478
23.1000 3.3563 4.0000
23.4000 5.0000 2.6447
23.4000 4.6000 2.8315
23.4000 4.3900 3.0000
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23.4000 4.2000 3.2472
23.4000 4.1185 3.3333
23.4000 3.9320 3.6667
23.4000 3.8732 4.0000
23.7000 5.0000 2.7562
23.7000 4.6390 3.0000
23.7000 4.6000 3.0645
23.7000 4.3740 3.3333
23.7000 4.2359 3.6667
23.7000 4.2000 3.9400
23.7000 4.1887 4.0000
24.0000 5.0000 2.8676
24.0000 4.8040 3.0000
24.0000 4.6023 3.3333
24.0000 4.6000 3.3403
24.0000 4.4552 3.6667
24.0000 4.4096 4.0000
24.3000 5.0000 2.9790
24.3000 4.9689 3.0000
24.3000 4.7629 3.3333
24.3000 4.6554 3.6667
24.3000 4.6204 4.0000
24.6000 5.0787 3.0000
24.6000 5.0000 3.2100
24.6000 4.9235 3.3333
24.6000 4.8186 3.6667
24.6000 4.7849 4.0000
24.9000 5.1757 3.0000
24.9000 5.0595 3.3333
24.9000 5.0000 3.6078
24.9000 4.9817 3.6667
24.9000 4.9494 4.0000
25.2000 5.2728 3.0000
25.2000 5.1732 3.3333
25.2000 5.1090 3.6667
25.2000 5.0870 4.0000
25.5000 5.3698 3.0000
25.5000 5.2868 3.3333
25.5000 5.2317 3.6667
25.5000 5.2126 4.0000
25.8000 5.4668 3.0000
25.8000 5.4005 3.3333
25.8000 5.3544 3.6667
25.8000 5.3381 4.0000
26.1000 5.5639 3.0000
26.1000 5.5141 3.3333
26.1000 5.4771 3.6667
26.1000 5.4637 4.0000
26.4000 5.6609 3.0000
26.4000 5.6278 3.3333
26.4000 5.5999 3.6667
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26.4000 5.5893 4.0000
26.7000 5.7579 3.0000
26.7000 5.7414 3.3333
26.7000 5.7226 3.6667
26.7000 5.7149 4.0000
27.0000 5.8549 3.0000
27.0000 5.8551 3.3333
27.0000 5.8453 3.6667
27.0000 5.8404 4.0000
27.3000 5.9520 3.0000
27.3000 5.9687 3.3333
27.3000 5.9681 3.6667
27.3000 5.9660 4.0000
27.6000 6.0594 3.0000
27.6000 6.0831 3.3333
27.6000 6.0846 3.6667
27.6000 6.0836 4.0000
27.9000 6.1769 3.0000
27.9000 6.1977 3.3333
27.9000 6.1991 3.6667
27.9000 6.1981 4.0000
28.2000 6.2945 3.0000
28.2000 6.3123 3.3333
28.2000 6.3135 3.6667
28.2000 6.3127 4.0000
28.5000 6.4121 3.0000
28.5000 6.4269 3.3333
28.5000 6.4279 3.6667
28.5000 6.4272 4.0000
28.8000 6.5297 3.0000
28.8000 6.5415 3.3333
28.8000 6.5423 3.6667
28.8000 6.5418 4.0000
29.1000 6.6473 3.0000
29.1000 6.6561 3.3333
29.1000 6.6567 3.6667
29.1000 6.6563 4.0000
29.4000 6.7648 3.0000
29.4000 6.7708 3.3333
29.4000 6.7711 3.6667
29.4000 6.7709 4.0000
29.7000 6.8824 3.0000
29.7000 6.8854 3.3333
29.7000 6.8856 3.6667
29.7000 6.8854 4.0000
30.0000 7.0000 3.0000
30.0000 7.0000 3.3333
30.0000 7.0000 3.6667
30.0000 7.0000 4.0000
30.0000 7.0000 3.0000
30.0000 7.0000 4.0000
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Data File "Example.flo"

------.FLOW-LINE DATA FOR FILE example -----

CONTOUR # X-COORD Y-COORD

1.00 1.11 1.17
2.00 1.12 1.33
3.00 1.12 1.50
4.00 1.12 1.66
5.00 1.11 1.83
1.00 1.23 1.17
2.00 1.23 1.33
3.00 1.23 1.50
4.00 1.23 1.66
5.00 1.23 1.83
1.00 1.34 1.17
2.00 1.35 1.33
3.00 1.35 1.50
4.00 1.35 1.66
5.00 1.34 1.83
1.00 2 06 1.17
2.00 1.46 1.33
3.00 1.46 1.50
4.00 1.46 1.66
5.00 1.46 1.83
1.00 1.57 1.16
2.00 1.58 1.33
3.00 1.58 1.50
4.00 1.58 1.66
5.00 1.57 1.83
1.00 1.69 1.17
2.00 1.69 1.33
3.00 1.69 1.50
4.00 1.69 1.66
5.00 1.69 1.83
1.00 1.81 1.17
2.00 1.81 1.33
3.00 1.80 1.50
4.00 1.80 1.66
5.00 1.80 1.83
1.00 1.92 1.17
2.00 1.92 1.33
3.00 1.92 1.50
4.00 1.92 1.66
5.00 1.92 1.83
1.00 2.04 1.17
2.00 2.04 1.33
3.00 2.03 1.50
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4.00 2.03 1.66
5.00 2.03 1.83
1.00 2.15 1.17
2.00 2.15 1.33
3.00 2.15 1.50
4.00 2.14 1.66
5.00 2.15 1.83
1.00 2.27 1.17
2.00 2.27 1.33
3.00 2.26 1.51
4.00 2.26 1.66
5.00 2.26 1.82
1.00 2.39 1.17
2.00 2.39 1.33
3.00 2.38 1.51
4.00 2.37 1.67
5.00 2.37 1.81
1.00 2.52 1.17
2.00 2.51 1.33
3.00 2.50 1.52
4.00 2.48 1.67
5.00 2.48 1.81
1.00 2.65 1.18
2.00 2.64 1.35
3.00 2.62 1.53
4.00 2.60 1.69
5.00 2.58 1.83
1.00 2.77 1.19
2.00 2.76 1.37
3.00 2.73 1.55
4.00 2.71 1.71
5.00 2.68 1.85
1.00 2.90 1.19
2.00 2.88 1.39
3.00 2.85 1.57
4.00 2.81 1.73
5.00 2.77 1.87
1.00 3.04 1.21
2.00 3.00 1.41
3.00 2.96 1.59
4.00 2.91 1.77
5.00 2.86 1.89
1.00 3.19 3.22
2.00 3.15 45
3.00 3.08 1.67
4.00 2.99 1.80
5.00 2.94 1.93
1.00 3.35 1.23
2.00 3.29 1.50
3.00 3.18 1.74
4.00 3.10 1.87
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ABSTRACT

This report outlines the development and use of the program "LAPLACE".

LAPLACE is capable of solving a second order two dimensional boundary value

problem, employing graphics to assist in mesh generation and solution presentation.

Galerkin approximation methods, along with the development of a finite element

mesh, permit the program to calculate nodal results over the domain of the problem. The

use of these nodal solutions with additional subroutines allows for the computation of

equipotential lines and lines perpendicular to the equipotential lines.

The current format of this program solves Laplace's Equation. Nodal solutions

to Laplace's Equation are calculated over the domain of the problem and used as the

basis for the generation of equipotential lines and their perpendiculars. Equipotential

lines are interpreted as contours and their perpendiculars represent flow lines for the

solution to Laplace's Equation. These lines are used in combination to develop a flow net

over the domain of the problem and this flow net is graphically displayed.

This program was written with the capability of solving several types of second

order two dimensional boundary value problems. The calculation of solutions to other

second order two dimensional boundary value problems is accomplished by entering the

appropriate functional coefficients of the differential equation into one subroutine.



BIBLIOGRAPHY

Becker, E. B. et al. Finite Elements An Introduction. Volume I. Englewood Cliffs,
New Jersey: Prentice-Hall, 1981.

Chapra, Steven C. and Canale, Raymond P. Numerical Methods For Engineers. New
York: McGraw-Hill Book Company, 1985

Gladwell, I. and Wait, R. A Survey of Numerical Methods for Partial Differential
Equations. Great Britain: Thomas Litho Ltd, 1979

Hughes, Thomas J. R. The Finite Element Method. Englewood Cliffs, New Jersey:
Prentice-Hall, 1987.

Johnson, Claes. Numerical Solution of Partial Differential Equations by the Finite
Element Method. New York: Cambridge University Press, 1987.

Kreyszig, Erwin. Advanced EngineeFing Mathematics. New York: John Wiley and Sons,
1983

Microsoft Corporation. DOS 5.0 Refernce Manual. U.S.A., 1991.

Microsoft Corporation. Microsoft Basic, Basic Language Reference. U.S.A., 1989.

Segerlind, Larry J. Applied Finite Element Analysis, 2nd ed. New York: John Wiley
and Sons, 1984.

Weaver, William Jr. and Paul R. Johnston. Finite Elements for Structural Analysis.
Englewood Cliffs, N.J.: Prentice-Hall, 1984.



135

5.00 3.00 2.00
1.00 3.55 1.26
2.00 3.44 1.56
3.00 3.30 1.81
4.00 3.21 1.95
5.00 3.05 2.08
1.00 3.75 1.34
2.00 3.60 1.69
3.00 3.41 1.91
4.00 3.28 2.05
5.00 3.10 2.16
1.00 3.98 1.47
2.00 3.74 1.81
3.00 3.53 2.05
4.00 3.35 2.18
5.00 3.16 2.27
1.00 4.20 1.67
2.00 3.89 2.00
3.00 3.64 2.19
4.00 3.46 2.33
5.00 3.19 2.42
1.00 4.38 1.94
2.00 4.03 2.18
3.00 3.77 2.38
4.00 3.57 2.51
5.00 3.22 2.64
1.00 4.52 2.16
2.00 4.17 2.36
3.00 3.90 2.57
4.00 3.68 2.71
5.00 3.26 2.89
1.00 4.60 2.38
2.00 4.31 2.55
3.00 4.04 2.75
4.00 3.83 2.91
5.00 3.45 3.16
1.00 4.64 2.60
2.00 4.44 2.73
3.00 4.18 2.93
4.00 4.01 3.09
5.00 3.71 3.39
1.00 4.72 2.78
2.00 4.55 2.87
3.00 4.34 3.06
4.00 4.19 3.26
5.00 4.00 3.55
1.00 4.80 2.89
2.00 4.64 3.00
3.00 4.50 3.18
4.00 4.37 3.34
5.00 4.24 3.66
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1.00 4.85 2.97
2.00 4.76 3.07
3.00 4.64 3.27
4.00 4.56 3.43
5.00 4.45 3.69
1.00 4.95 3.03
2.00 4.88 3.15
3.00 4.76 3.33
4.00 4.72 3.48
5.00 4.65 3.72
1.00 5.05 3.08
2.00 4.99 3.22
3.00 4.91 3.38
4.00 4.86 3.53
5.00 4.81 3.73
1.00 5.14 3.11
2.00 5.09 3.25
3.00 5.04 3.41
4.00 5.01 3.56
5.00 4.97 3.75
1.00 5.23 3.14
2.00 5.19 3.29
3.00 5.15 3.43
4.00 5.12 3.59
5.00 5.10 3.76
1.00 5.33 3.17
2.00 5.29 3.31
3.00 5.27 3.45
4.00 5.24 3.61
5.00 5.23 3.77
1.00 5.43 3.19
2.00 5.40 3.33
3.00 5.38 3.47
4.00 5.36 3.63
5.00 5.35 3.77
1.00 5.53 3.21
2.00 5.51 3.35
3.00 5.50 3.49
4.00 5.48 3.64
5.00 5.47 3.78
1.00 5.64 3.22
2.00 5.63 3.36
3.00 5.61 3.50
4.00 5.60 3.65
5.00 5.60 3.79
1.00 5.75 3.23
2.00 5.74 3.37
3.00 5.73 3.51
4.00 5.72 3.66
5.00 5.72 3.79
1.00 5.86 3.23
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2.00 5.85 3.37
3.00 5.85 3.51
4.00 5.85 3.67
5.00 5.84 3.79
1.00 5.96 3.23
2.00 5.97 3.37
3.00 5.97 3.52
4.00 5.97 3.66
5.00 5.97 3.79
1.00 6.08 3.22
2.00 6.08 3.37
3.00 6.08 3.51
4.00 6.08 3.66
5.00 6.08 3.79
1.00 6.19 3.21
2.00 6.20 3.37
3.00 6.20 3.51
4.00 6.20 3.66
5.00 6.20 3.79
1.00 6.31 3.21
2.00 6.31 3.37
3.00 6.31 3.51
4.00 6.31 3.66
5.00 6.31 3.79
1.00 6.42 3.20
2.00 6.43 3.37
3.00 6.43 3.51
4.00 6.43 3.66
5.00 6.43 3.79
1.00 6.54 3.19
2.00 6.54 3.37
3.00 6.54 3.51
4.00 6.54 3.66
5.00 6.54 3.79
1.00 6.65 3.19
2.00 6.66 3.37
3.00 6.66 3.52
4.00 6.66 3.66
5.00 6.66 3.79
1.00 6.77 3.19
2.00 6.77 3.37
3.00 6.77 3.51
4.00 6.77 3.66
5.00 6.77 3.80
1.00 6.88 3.19
2.00 6.89 3.37
3.00 6.89 3.51
4.00 6.89 3.66
5.00 6.89 3.79
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